Important: The tensor package has been deprecated. Use the superseding commands DifferentialGeometry[Tensor][RiemannInvariants] and Physics[Riemann] instead.
Define the coordinate variables and the covariant natural basis metric :
>
|
|
>
|
|
>
|
|
| (1) |
Now give a tetrad that transforms the above metric into the one in Debever's formalism :
>
|
|
>
|
|
>
|
|
>
|
|
>
|
|
>
|
|
>
|
|
>
|
|
>
|
|
>
|
|
| (2) |
Obtain the curvature components.
>
|
|
>
|
|
Specify the simplification wanted :
>
|
`tensor/invars/simp`:=proc(x) x end proc:
|
Now you are ready to compute any of the ten invariants. For example,
>
|
|
| (3) |
Repeat with a different simplification :
>
|
`tensor/invars/simp`:=proc(x) simplify(factor(x)) end proc:
|
>
|
|
| (4) |
Verify the two results are identical :
Specify the "inner" simplification, namely `tensor/invars/Msimp`:
>
|
`tensor/invars/Msimp`:=proc(x) x end proc:
|
>
|
|
| (6) |
Repeat with a different "outer" simplifier :
>
|
`tensor/invars/simp`:=proc(x) x end proc:
|
>
|
|
| (7) |
Verify the two results are identical :
Demonstrate the use of the conj_pairs parameter :
>
|
|
| (9) |