RubiksCubeGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : RubiksCubeGroup

GroupTheory

  

RubiksCubeGroup

  

construct a permutation group isomorphic to the group of Rubik's Cube

 

Calling Sequence

Description

Examples

Compatibility

Calling Sequence

RubiksCubeGroup()

Description

• 

The group of Rubik's Cube (TM) is a group of cube transformations of the popular Rubik's Cube (TM) puzzle game.

• 

The RubiksCubeGroup() command returns a permutation group isomorphic to the Rubik's Cube (TM) group.

Examples

withGroupTheory:

RRubiksCubeGroup

R6,25,43,167,28,42,138,30,41,1117,19,24,2218,21,23,20,1,14,48,272,12,47,293,9,46,3233,35,40,3834,37,39,36,1,17,41,404,20,44,376,22,46,359,11,16,1410,13,15,12,3,38,43,195,36,45,218,33,48,2425,27,32,3026,29,31,28,1,3,8,62,5,7,49,33,25,1710,34,26,1811,35,27,19,14,22,30,3815,23,31,3916,24,32,4041,43,48,4642,45,47,44

(1)

GroupOrderR

43252003274489856000

(2)

IsSimpleR

false

(3)

DegreeR

48

(4)

IsTransitiveR

false

(5)

numelemsOrbitsR

2

(6)

mapnumelems,OrbitsR

24,24

(7)

LabelsR

front,back,left,right,up,down

(8)

zipassign,LabelsR,GeneratorsR:

Let us construct the so-called "slice squared" subgroup, whose generators rotate a central "slice" by a half-turn.

SSSubgroupfront2·back2,right2·left2,up2·down2,R

SS1,82,73,64,59,2510,2611,2714,3015,3116,3217,3318,3419,3522,3823,3924,4041,4842,4743,4644,45,1,482,473,466,437,428,419,3211,3012,2913,2814,2716,2517,2418,2319,2220,2133,4034,3935,3836,37,1,413,434,445,456,468,489,1610,1511,1412,1317,4019,3820,3721,3622,3524,3325,3226,3127,3028,29

(9)

These generators commute with one another, so they generate a commutative subgroup of R.

IsAbelianSS

true

(10)

GroupOrderSS

8

(11)

Compatibility

• 

The GroupTheory[RubiksCubeGroup] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory[Degree]

GroupTheory[GroupOrder]

GroupTheory[IsAbelian]

GroupTheory[IsTransitive]

GroupTheory[Subgroup]

 


Download Help Document