chrem - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


chrem

Chinese Remainder Algorithm

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

chrem(u, m)

Parameters

u

-

list [u1,..., un] of evaluations

m

-

list of moduli [m1,..., mn]

Description

• 

The list of moduli m must be pairwise relatively prime positive integers. (For the case of non-coprime moduli, see NumberTheory[ChineseRemainder].) Both lists u and m must be the same length n. The list of images u need not be reduced modulo m on input. In the following, M denotes the product of the moduli.

• 

If u is a list of integers, chrem(u, m) computes the unique positive integer a such that amodm1=u1,amodm2=u2,...,amodmn=un , and 0a<M.

• 

If the global variable mod has been assigned to mods then the result a is returned in the symmetric range for the integers modulo M. For example, the symmetric range for the integers modulo M=35 is -17a+17.

• 

If u is a list of polynomials, chrem is applied across the polynomials so that the output f is a polynomial satisfying fmodm1=u1 , ..., fmodmn=un.

• 

If u is a list of lists, chrem is applied across the lists so that the output will be a list L satisfying Lmodm1=u1, ..., Lmodmn=un .

• 

For a definition, see Chinese remainder theorem.

Examples

chrem1&comma;2&comma;5&comma;7

16

(1)

chrem3x+1&comma;x+2y+2&comma;5&comma;7

8x+16+30y

(2)

chrem3&comma;0&comma;1&comma;1&comma;2&comma;2&comma;5&comma;7

8&comma;30&comma;16

(3)

`mod`mods

modmods

(4)

chrem3x+1&comma;x+2y+2&comma;5&comma;7

8x+165y

(5)

See Also

GaussInt

GIchrem

NumberTheory[ChineseRemainder]

 


Download Help Document