ReduceHyperexp - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

DEtools

  

ReduceHyperexp

  

a reduction algorithm for hyperexponential functions

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

ReduceHyperexp(H, x, newH)

Parameters

H

-

hyperexponential function of x

H1

-

hyperexponential function of x

H2

-

hyperexponential function of x

x

-

variable

newH

-

(optional) name; assigned a computed equivalence of H

Description

• 

For a specified hyperexponential function H of x, the (H1, H2) := ReduceHyperexp(H, x, newH) calling sequence constructs two hyperexponential functions H1 and H2 such that  and the certificate  has a differential rational normal form  with v of minimal degree.

• 

The output from ReduceHyperexp is a sequence of two elements  each of which is either  or written in the form

  

(The form shown above is called a multiplicative decomposition of the hyperexponential function .)

• 

ReduceHyperexp is a generalization of the reduction algorithm for rational functions by Hermite (recall that a rational function is also a hyperexponential function). It also covers the differential Gosper's algorithm.

Examples

(1)

(2)

(3)

(4)

(5)

References

  

Geddes, Keith; Le, Ha; and Li, Ziming. "Differential rational canonical forms and a reduction algorithm for hyperexponential functions." Proceedings of ISSAC 2004. ACM Press. (2004): 183-190.

See Also

DEtools[AreSimilar]

DEtools[Gosper]

DEtools[IsHyperexponential]

DEtools[MultiplicativeDecomposition]

SumTools[Hypergeometric][SumDecomposition]

 


Download Help Document