DEtools
parametricsol
computes parametric solutions for Ordinary Differential Equations
Calling Sequence
Parameters
Description
Examples
parametricsol(ODE, v, Lie, explicit, <other options>)
ODE
-
first order differential equation
v
optiona, dependent variable of the ODE, required when not obvious
Lie
optional, to request the use of symmetry methods when computing parametric solutions for 1st order ODEs
explicit
optional, for 1st order ODEs, to request the removal of the parameter used to express the parametric solution
<other options>
the optional arguments explained in dsolve,Lie, in connection with using Lie methods to compute the parametric solution
parametricsol computes parametric solutions mainly for nonlinear ODEs, although the methods implemented applies as well to linear ODEs. Two methods are implemented:
Some 1st order ODEs fit a pattern for which a parametric solution, as explained in odeadvisor[parametric], can be sought. This is the default method tried for 1st order ODEs.
More general, 1st and higher order ODEs, for which a as many point symmetries as the differential order, forming a group, can be computed, can always have their general solution represented in parametric form (see DEtools[reduce_order]). This is the default method for 2nd and higher order ODEs, and is invoked for 1st order ODEs using the optional argument Lie
This function is part of the DEtools package, and so it can be used in the form parametricsol(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[parametricsol](..).
withDEtools:
ode1≔xn−1diffyx,xn−nxdiffyx,x+yx
ode1≔xn−1ⅆⅆxyxn−nxⅆⅆxyx+yx
parametricsolode1
y_T=−c__1_T−nn−1n−1_Tn+nc__1_T−1n−1,x_T=c__1_T−nn−1
To see the solution to this equation without the parameter _T use the optional argument explicit
ans1≔parametricsolode1,explicit
ans1≔yx=−xn−1c__1xc__11nxn+nc__1xc__11n
odetestans1,ode1
0
A 1st order ODE example where the solution can only be computed using symmetry methods
ode2≔diffyx,x=Fyx−xlnxx+lnx
ode2≔ⅆⅆxyx=Fyx−xlnxx+lnx
parametricsolode2,Lie
y_T=ⅇ∫1F_T−_T−1ⅆ_T+c__1∫1F_T−_T−1ⅆ_T+c__1+_T,x_T=ⅇ∫1F_T−_T−1ⅆ_T+c__1
A 2nd order nonlinear ODE; Lie methods are automatically invoked when the differential order is higher than 1
ode3≔diffyx,x,x=yx2diffyx,x
ode3≔ⅆ2ⅆx2yx=yx2ⅆⅆxyx
parametricsolode3
y_T=_T13c__2_T−313,x_T=∫−1_T23_T−313c__22ⅆ_T+c__1
See Also
DEtools, reduce_order
dsolve
dsolve, Lie
odeadvisor[parametric]
Download Help Document