BachTensor - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[BachTensor] - calculate the Bach tensor of a metric

 

Calling Sequences

     BachTensor()

     BachTensor(, )

     BachTensor(, G, R, C)

Parameters

     g       - a metric tensor on the tangent bundle of a manifold

     Γ       - (optional) the Christoffel connection of

     R       - (optional) the curvature tensor of

     C       - (optional) the Cotton tensor of

 

Description

Examples

Description

• 

Let  be a metric (of any signature) on the tangent bundle of a manifold  of dimension The metric determines: the covariant derivative , the Schouten tensor , the Weyl tensor  and the Cotton tensor  The Bach tensor is defined as

he Bach tensor is trace-free: See A. Grover and P. Nurowski, J. Geom. Phys. 56, 450-484 (2006) for additional properties, applications and references.

• 

The first calling sequence computes  directly from the given metric using the formula above. The second calling sequence computes  from the given metric and Christoffel connection. The third calling sequence computes  directly from the given metric Christoffel connection, curvature and Cotton tensors.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form BachTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-BachTensor.

Examples

 

Example 1.

Calculate the Bach tensor of a metric and check that it is trace-free.

 

(2.1)
M > 

(2.2)
M > 

(2.3)
M > 

(2.4)

 

Example 2.

Calculate the Bach tensor of a metric and Christoffel connection. We use the metric from the previous example.

 

 

M > 

(2.5)
M > 

(2.6)

Example 3.

Calculate the Bach tensor of a metric Christoffel connection, curvature tensor and Cotton tensor. We use the metric and connection from the previous examples.

 

M > 

(2.7)
M > 

(2.8)
M > 

(2.9)

Example 3.

In four dimensions, the Bach tensor is an obstruction to a metric being conformal to an Einstein metric. Here we check that the Bach tensor vanishes on a metric conformal to a Ricci-flat metric in four dimensions.

 

M > 

(2.10)
M > 

(2.11)
M > 

(2.12)
M > 

(2.13)
M > 

(2.14)

See Also

DifferentialGeometry

CurvatureTensor

RicciTensor

RicciScalar

SchoutenTensor

WeylTensor

ProjectiveCurvature

 


Download Help Document