&algmult - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


DifferentialGeometry[algebraic operations]

addition, subtraction, scalar multiplication, wedge product, tensor product

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

A &plus B - add two vectors, differential forms or tensors

A &minus B- subtract one vector, differential form or tensor from another

A &mult B - multiply a Maple expression by a vector, differential form or tensor

A &wedge B- form the wedge (or skew) product of a pair of differential forms or multi-vectors

A &tensor B- form the tensor product of a pair of tensors

A &algmult B - multiply two vectors in an algebra  

Parameters

A, B

-

Maple expressions, differential forms or tensors

Description

• 

In the DifferentialGeometry package the wedge product of 1-forms is defined in terms of the tensor product by αβ=αββα.

• 

When using these commands together within a single Maple expression, it is important to use parentheses to insure that the operations are executed in the correct order.

• 

In an interactive Maple session, it is usually more convenient to use the commands evalDG and DGzip to perform these basic algebraic operations.

• 

Here are the precise lists of admissible arguments for these commands.

• 

A &plus B, A &minus B -- A and B: Maple expressions, vectors, differential forms of the same degree, differential biforms of the same bidegree, tensors with the same index type and density weights. A and B must be defined on the same frame.

• 

A &mult B -- A: a Maple expression; B: a Maple expression, vector, differential form, differential biform, tensor. A and B must be defined on the same frame.

• 

A &wedge B -- A and B: Maple expressions or differential forms, differential biforms.  If A and B are forms, then the sum of their degrees cannot exceed the dimension of the frame on which they are defined. If A and B are bi-forms, then the sum of their horizontal degrees cannot exceed the dimension of the base manifold on which they are defined.  A and B must be defined on the same frame.

• 

A &tensor B -- A and B: Maple expressions, vectors, differential 1-forms, tensors.  A and B must be defined on the same frame.

• 

These commands are part of the DifferentialGeometry package, and so can be used in the forms given above only after executing the command with(DifferentialGeometry).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Use DGsetup to define a three-dimensional manifold M with coordinates [x, y, z].

DGsetupx,y,z,M,verbose

The following coordinates have been protected:

x,y,z

The following vector fields have been defined and protected:

D_x,D_y,D_z

The following differential 1-forms have been defined and protected:

dx,dy,dz

frame name: M

(1)

 

Example 1.

Create linear combinations of vector fields and differential 1-forms using &plus and &mult.

X1D_x&plusD_z

X1D_x+D_z

(2)

X23z&multD_x&plus2y&multD_y

X23zD_x2yD_y

(3)

X3X2&minus3z&multX1

X32yD_y3zD_z

(4)

α1sinz&multdx&minuscosy&multdz

α1sinzdxcosydz

(5)

α2cosx&multdy&pluscosz&multdz

α2cosxdy+coszdz

(6)

 

Example 2.

Create differential 2-forms using &plus and &mult and &wedge.

α32&multdx&wedgedy&plus5&multdy&wedgedz

α32dxdy+5dydz

(7)

α4α1&wedgeα2

α4sinzcosxdxdy+sin2zdx2dz+cosycosxdydz

(8)

α5α1&wedgeα2&minusα3

α52+sinzcosxdxdy+sin2zdx2dz+5+cosycosxdydz

(9)

α6α1&wedgeα3

α62cosy5sinzdxdydz

(10)

 

Example 3.

Create various tensors using &plus, &mult and &tensor.

T1X1&tensorX1

T1D_xD_x+D_xD_z+D_zD_x+D_zD_z

(11)

T2X1&tensorα1

T2sinzD_xdxcosyD_xdz+sinzD_zdxcosyD_zdz

(12)

T31&tensordx&wedgedy

T3dxdydydx

(13)

T4dx&tensordx&tensorD_y&tensorD_z&tensordz

T4dxdxD_yD_zdz

(14)

T51y2&multdx&tdx+dy&tdy

T5dxy2dx+dyy2dy

(15)

 

Example 4.

Create a multi-vector using &plus, &mult and &tensor.

V12&multD_x&wedgeD_y&plus3&multD_y&wedgeD_z

V12D_xD_y+3D_yD_z

(16)

Example 5.

Use the command AlgebraLibraryData to retrieve the structure equations for the quaternions.

LAAlgebraLibraryDataQuaternions,Q

LAe12=e1,e1·e2=e2,e1·e3=e3,e1·e4=e4,e2·e1=e2,e22=e1,e2·e3=e4,e2·e4=e3,e3·e1=e3,e3·e2=e4,e32=e1,e3·e4=e2,e4·e1=e4,e4·e2=e3,e4·e3=e2,e42=e1

(17)

Initialize.

DGsetupLA,e,i,j,k,θ

algebra name: Q

(18)

Calculate some simple sums and products of quaternions.

Q1i&algmultj

Q1k

(19)

Q2e&plusi&plusj&plusk&algmulte&minusi&plusj&plusk

Q24e

(20)

See Also

DifferentialGeometry

DGzip

evalDG