identities - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


FunctionAdvisor/identities

return the identities of a given mathematical function

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

FunctionAdvisor(identities, math_function)

Parameters

identities

-

literal name; 'identities'

math_function

-

Maple name of mathematical function

Description

• 

The FunctionAdvisor(identities, math_function) command returns a list of identities for that function.

Examples

FunctionAdvisoridentities,sin

sinarcsinz=z,sinz=sinz,sinz=2sinz2cosz2,sinz=1cscz,sinz=2tanz21+tanz22,sinz=I2ⅇIzⅇ−Iz,sinz2=1cosz2,sinz2=12cos2z2

(1)

FunctionAdvisordescribe,coth

coth=hyperbolic cotangent

(2)

FunctionAdvisordefinition,coth

cothz=ⅇz2+1ⅇz21,with no restrictions on z

(3)

FunctionAdvisoridentities,coth

cothz=cothz,cothz=cothz2212cothz2,cothz=coshzsinhz,cothz=1+cosh2zsinh2z,cothz=sinh2z1cosh2z,cothz=1tanhz,cothz=1+tanhz222tanhz2,cothz=IIcothz22Itanhz22,cothz=ⅇz+ⅇzⅇzⅇz,cothz=IIcsch2zIcoth2z

(4)

eq1FunctionAdvisoridentities,BesselI

eq1BesselIa,z=zaBesselIa,zza,BesselIa,Iz=IzaBesselJa,zza,BesselIa+1,zBesselIa,zBesselI1a,zBesselIa,z=2sinaππz,BesselIa,z2=z2a2BesselIa,zza,BesselIa,bczqp=bczqpaBesselIa,bcpzpqbcpzpqa,2p::,BesselIa,z=2a1BesselIa1,zz+BesselIa2,z,BesselIa,z=2a+1BesselIa+1,zz+BesselIa+2,z

(5)

The variables used by the FunctionAdvisor command to create the function calling sequences are local variables. Therefore, the previous example does not depend on a or z.

dependseq1,a,dependseq1,z

false,false

(6)

To make the FunctionAdvisor command return results using global variables, pass the function call itself when requesting the function identities.

eq2FunctionAdvisoridentities,Eia,z

eq2Ei1z=Eiz+lnz2ln1z2lnz,Eiaz=a!ⅇz_k1=0az_k1a1_k1!,a::0,+,Eiaz=zEi2+az+2+azEi1+az1+a,Eiaz=a+zEi1+az+1+aEi2+azz

(7)

dependseq2,a,dependseq2,z

true,true

(8)

See Also

depends

FunctionAdvisor

FunctionAdvisor/special_values

FunctionAdvisor/topics

 


Download Help Document