 GIsieve - Maple Help

GaussInt

 GIsieve
 Gaussian prime generator Calling Sequence GIsieve(m) Parameters

 m - positive integer Description

 • The GIsieve function generates a list of Gaussian primes $x+Iy$ whose norms are less than or equal to ${m}^{2}$, and who are located in the one-eighth plane defined by $0\le y .
 • Any prime found in that area has seven more associated primes: $-x+Iy$, $±x-Iy$,  $±y-Ix$, except for $1+I$ which exceptionally lies on $x=y$ and has only three associated primes. Examples

 > $\mathrm{with}\left(\mathrm{GaussInt}\right):$
 > $\mathrm{GIsieve}\left(10\right)$
 $\left[{14}{,}\left[{1}{+}{I}{,}{2}{+}{I}{,}{3}{,}{3}{+}{2}{}{I}{,}{4}{+}{I}{,}{5}{+}{2}{}{I}{,}{6}{+}{I}{,}{5}{+}{4}{}{I}{,}{7}{,}{7}{+}{2}{}{I}{,}{6}{+}{5}{}{I}{,}{8}{+}{3}{}{I}{,}{8}{+}{5}{}{I}{,}{9}{+}{4}{}{I}\right]\right]$ (1)
 > $\mathrm{plots}:-\mathrm{display}\left(\mathrm{plots}:-\mathrm{complexplot}\left(\mathrm{GIsieve}\left(100\right)\left[2\right],'\mathrm{style}'='\mathrm{point}'\right),\mathrm{plot}\left(x,x=0..100\right)\right)$ >