GroupTheory/GeneralSemilinearGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : GroupTheory/GeneralSemilinearGroup

GroupTheory

  

GeneralSemilinearGroup

  

construct a permutation group isomorphic to the General Semi-linear Group over a finite field

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

GeneralSemilinearGroup( n, q )

GammaL( n, q )

Parameters

n

-

a positive integer

q

-

a power of a prime number

Description

• 

The general semi-linear group ΓLn,q is the group of all semi-linear transformations of an n-dimensional vector space over the field with q elements. It is isomorphic to a semi-direct product of the general linear group GLn,q with the Galois group of the field with q elements over its prime sub-field. Thus, if q is prime, then ΓLn,q and GLn,q are isomorphic.

• 

If n and q are positive integers, then the GeneralSemilinearGroup( n, q ) command returns a permutation group isomorphic to the general semi-linear group  ΓLn,q . Otherwise, a symbolic group is returned, for which Maple can do some limited computations.

• 

The abbreviation GammaL( n, q ) is available as a synonym for GeneralSemilinearGroup( n, q ).

• 

In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.

Examples

withGroupTheory:

GGeneralSemilinearGroup2,4

GΓL2,4

(1)

GroupOrderG

360

(2)

GGammaL2,5

GΓL2,5

(3)

GroupOrderG

480

(4)

AreIsomorphicG,GL2,5

true

(5)

GGammaL2,9

GΓL2,9

(6)

csCompositionSeriesG

csΓL2,91,73,12,78,2,38,24,393,48,31,53,6,69,62,674,13,43,14,8,26,77,255,59,46,56,7,34,65,289,30,61,21,18,60,32,1510,22,64,63,20,17,47,4511,68,76,33,19,52,44,5716,55,42,49,23,29,75,7127,40,74,58,54,80,37,3536,70,51,79,72,50,66,41,1,60,49,59,2,30,71,343,80,16,73,6,40,23,384,50,29,48,8,70,55,695,20,75,26,7,10,42,139,63,72,27,18,45,36,5411,12,35,61,19,24,58,3214,56,39,53,25,28,78,6715,22,68,65,21,17,52,4631,41,74,57,62,79,37,3343,64,51,76,77,47,66,44,9,36,18,7210,37,19,7311,38,20,7412,39,21,7513,40,22,7614,41,23,7715,42,24,7816,43,25,7917,44,26,8027,63,54,4528,64,55,4629,65,56,4730,66,57,4831,67,58,4932,68,59,5033,69,60,5134,70,61,5235,71,62,53,9,63,72,27,18,45,36,5410,64,73,28,19,46,37,5511,65,74,29,20,47,38,5612,66,75,30,21,48,39,5713,67,76,31,22,49,40,5814,68,77,32,23,50,41,5915,69,78,33,24,51,42,6016,70,79,34,25,52,43,6117,71,80,35,26,53,44,621,23,64,85,79,1810,2011,1912,2413,2614,2515,2116,2317,2227,5428,5629,5530,6031,6232,6133,5734,5935,5836,7237,7438,7339,7840,8041,7942,7543,7744,7645,6346,6547,6448,6949,7150,7051,6652,6853,67

(7)

seqGroupOrderS,S=cs

11520,5760,2880,1440,720,2,1

(8)

GroupOrderGammaL4,4

5922201600

(9)

GroupOrderGammaLn,q

logpqk=0n1qnqk

(10)

GroupOrderGammaL3,q

logpqq31q3qq3q2

(11)

See Also

GF

GroupTheory[GeneralLinearGroup]

GroupTheory[GroupOrder]

GroupTheory[SpecialSemilinearGroup]

 


Download Help Document