AdjointMatrix - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


AdjointMatrix

calculate the adjoint representation of a LAVF object.

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

AdjointMatrix( L, output = out)

AdjointMatrix( L, M, output = out)

AdjointMatrix( L, M, N, output = out)

Parameters

L, M, N

-

a LAVF object of finite type (see IsFiniteType for more detail)

out

-

(optional) a string: either "matrix" or "basis"

Description

• 

In the first calling sequence, AdjointMatrix(L) returns the adjoint representation matrix of L.

• 

For AdjointMatrix(L) to make sense, the LAVF object L must be a Lie algebra (i.e. IsLieAlgebra(L) returns true. See IsLieAlgebra for more detail).

• 

In the second calling sequence,  AdjointMatrix(L,M) returns a matrix representation of the Lie algebra L on the invariant subspace M. (i.e IsInvariant(M,L) returns true. See IsInvariant for more detail).

• 

The third calling sequence is the general form of the method. AdjointMatrix(L,M,N) returns a matrix representing the action of L on M in N.

• 

For AdjointMatrix(L, M, N) to make sense, L must commute with M modulo N (i.e. AreCommuting(L,M,N) returns true. See AreCommuting for more detail).

• 

By specifying output = "basis", the output will be returned in terms of basis.

• 

This method is associated with the LAVF object. For more detail, see Overview of the LAVF object.

Examples

withLieAlgebrasOfVectorFields:

Typesetting:-Settingsuserep=true:

Typesetting:-Suppressξx,y,ηx,y:

VVectorFieldξx,yDx+ηx,yDy,space=x,y

Vξⅆⅆx+ηⅆⅆy

(1)

E2LHPDEdiffξx,y,y,y=0,diffηx,y,x=diffξx,y,y,diffηx,y,y=0,diffξx,y,x=0,indep=x,y,dep=ξ,η

E2ξy,y=0,ηx=ξy,ηy=0,ξx=0,indep=x,y,dep=ξ,η

(2)

Construct a LAVF for theEuclidean Lie algebra E(2).

LLAVFV,E2

Lξⅆⅆx+ηⅆⅆy&whereξy,y=0,ξx=0,ηx=ξy,ηy=0

(3)

IsLieAlgebraL

true

(4)

AdjointMatrixL

0ξyξξy0η000

(5)

AdjointMatrixL,output=basis

010−100000,000001000,00−1000000

(6)

Compatibility

• 

The AdjointMatrix command was introduced in Maple 2020.

• 

For more information on Maple 2020 changes, see Updates in Maple 2020.

See Also

LieAlgebrasOfVectorFields (Package overview)

LAVF (Object overview)

LieAlgebrasOfVectorFields[VectorField]

LieAlgebrasOfVectorFields[LHPDE]

LieAlgebrasOfVectorFields[LAVF]

IsLieAlgebra

AreCommuting

IsFiniteType