 MatrixPower - Maple Help

LinearAlgebra

 MatrixPower
 determine the matrix power A^(n), as a generalized matrix function, for a Matrix A Calling Sequence MatrixPower(A, n, options) Parameters

 A - square Matrix n - numeric; scalar parameter options - (optional); constructor options for the result object Description

 • The MatrixPower(A) command returns the Matrix power ${A}^{n}$. This is an example of a generalized Matrix function, F(A).
 • The scalar parameter n can be any numeric value, not only an integer.
 • The options option provides additional information (readonly, shape, storage, order, datatype, and attributes) to the Matrix constructor that builds the result. These options may also be provided in the form outputoptions=[...], where [...] represents a Maple list.  If a constructor option is provided in both the calling sequence directly and in an outputoptions option, the latter takes precedence (regardless of the order).
 • This function is part of the LinearAlgebra package, and so it can be used in the form MatrixPower(..) only after executing the command with(LinearAlgebra). However, it can always be accessed through the long form of the command by using LinearAlgebra[MatrixPower](..). Examples

 > $\mathrm{with}\left(\mathrm{LinearAlgebra}\right):$
 > $A≔\mathrm{Matrix}\left(\left[\left[-13,-10\right],\left[21,16\right]\right]\right)$
 ${A}{≔}\left[\begin{array}{cc}{-13}& {-10}\\ {21}& {16}\end{array}\right]$ (1)
 > $\mathrm{MatrixPower}\left(A,2\right)$
 $\left[\begin{array}{cc}{-41}& {-30}\\ {63}& {46}\end{array}\right]$ (2)
 > $\mathrm{SQ}≔\mathrm{MatrixPower}\left(A,\frac{1}{2}\right)$
 ${\mathrm{SQ}}{≔}\left[\begin{array}{cc}{15}{-}{14}{}\sqrt{{2}}& {-}{10}{}\sqrt{{2}}{+}{10}\\ {21}{}\sqrt{{2}}{-}{21}& {-}{14}{+}{15}{}\sqrt{{2}}\end{array}\right]$ (3)
 > $\mathrm{map}\left(\mathrm{radnormal},{\mathrm{SQ}}^{2}\right)$
 $\left[\begin{array}{cc}{-13}& {-10}\\ {21}& {16}\end{array}\right]$ (4)
 > $A≔\mathrm{Matrix}\left(\left[\left[-3.0,-1.0\right],\left[2.0,6.0\right]\right]\right)$
 ${A}{≔}\left[\begin{array}{cc}{-3.0}& {-1.0}\\ {2.0}& {6.0}\end{array}\right]$ (5)
 > $\mathrm{MatrixPower}\left(A,3,\mathrm{readonly}\right)$
 $\left[\begin{array}{cc}{-27.}& {-25.}\\ {50.}& {198.}\end{array}\right]$ (6)