MathematicalFunctions
Get
return information on a mathematical function
Calling Sequence
Parameters
Description
Examples
Get(topic, math_function, all)
topic
-
name; specifies the topic for information
math_function
name; mathematical function
all
(optional) literal name; can be used with only calling_sequence topic to return all known calling sequences
The Get(topic, math_function) function returns the topic information on the function math_function. If the requested information is not available it returns NULL.
The topic argument must be one of:
analytic_extension
asymptotic_expansion
branch_cuts
branch_points
calling_sequence
classify_function
definition
describe
differentiation_rule
display
identities
integral_form
plot
series
singularities
special_values
sum_form
To display the list of possible values for the math_function argument, use the FunctionAdvisor(known_functions) function. For more information, see FunctionAdvisor/known_functions.
The Get(topic, math_function) function is equivalent to FunctionAdvisor(topic, math_function), but does not attempt to match misspelled topic or math_function arguments to the correct names. For more information, see FunctionAdvisor.
The FunctionAdvisor command supports additional topics. For more information, see FunctionAdvisor/topics.
withMathematicalFunctions
&Intersect,&Minus,&Union,Assume,Coulditbe,Evalf,Get,Is,SearchFunction,Sequences,Series
Getseries,arcsin
seriesarcsinz,z,4=z+16z3+Oz5
Getsum_form,tan
tanz=∑_k1=1∞bernoulli2_k1−1_k1z−1+2_k14_k1−16_k1Γ2_k1+1,∧z<π2
Getspecial_values,sec
secπ6=233,secπ4=2,secπ3=2,sec∞=undefined,sec∞I=0,secπn=−1,∧n::odd,secπn=1,∧n::even,secπn2=∞+∞I,∧n::odd
Getbranch_cuts,arccot
arccotz,z∈ComplexRange−∞I,−I∨z∈ComplexRangeI,∞I
Getidentities,BesselK
BesselKa,Iz=−πBesselYa,z2Ia+BesselJa,zlnz−lnIzIa,∧a::ℤ,BesselKa,Iz=−πzaBesselYa,z2Iza+πBesselJa,z−Izaza+zacosaπIzacscaπ2,∧a::¬ℤ,BesselKa,−z=−1aBesselKa,z+BesselIa,zlnz−ln−z,∧a::ℤ,BesselKa,−z=zaBesselKa,z−za+πza−za−−zazaBesselIa,zcscaπ2,∧a::¬ℤ,BesselKa,bczqp=bcpzpqaBesselKa,bcpzpqbczqpa−πcscaπBesselIa,bcpzpqbczqpabcpzpqa−bcpzpqabczqpa2,a::¬ℤ∧2p::ℤ,BesselKa,bczqp=czqpcpzpqaBesselKa,bcpzpq−−1aBesselIa,bcpzpqlnbczqp−lnbcpzpq,a::ℤ∧2p::ℤ,BesselKa,z=2a−1BesselKa−1,zz+BesselKa−2,z,BesselKa,z=−2a+1BesselKa+1,zz+BesselKa+2,z
Getcalling_sequence,Ζ,all
ζs,ζns,ζns,a
Getdefinition,JacobiAM
z=JacobiAM∫0z11−k2sinθ2ⅆθ,k,z::−32,32
Getdefinition,InverseJacobiAM
InverseJacobiAMφ,k=∫0φ11−k2sin_θ12ⅆ_θ1,with no restrictions on φ,k
See Also
FunctionAdvisor
FunctionAdvisor/analytic_extension
FunctionAdvisor/asymptotic_expansion
FunctionAdvisor/branch_cuts
FunctionAdvisor/branch_points
FunctionAdvisor/calling_sequence
FunctionAdvisor/classify_function
FunctionAdvisor/definition
FunctionAdvisor/describe
FunctionAdvisor/differentiation_rule
FunctionAdvisor/display
FunctionAdvisor/identities
FunctionAdvisor/integral_form
FunctionAdvisor/series
FunctionAdvisor/singularities
FunctionAdvisor/special_values
FunctionAdvisor/sum_form
MathematicalFunctions[SearchFunction]
MathematicalFunctions[Series]
Download Help Document