PolynomialIdeals
UnivariatePolynomial
compute the smallest univariate polynomial in an ideal
Calling Sequence
Parameters
Description
Examples
UnivariatePolynomial(v, J, X)
v
-
variable name
J
polynomial ideal or a list or set of generator polynomials
X
(optional) set of variable names
The UnivariatePolynomial command computes a univariate polynomial in v of least degree that is contained in the ideal J. If no such polynomial exists, then zero is returned. A zero-dimensional ideal contains a univariate polynomial in every variable.
The first argument must be the variable in which a univariate polynomial is to be computed. The second argument must be a polynomial ideal. An optional third argument overrides the default ring variables.
withPolynomialIdeals:
J≔x3−y2,y−x
J≔y−x,x3−y2
UnivariatePolynomialx,J
x3−x2
K≔x3−y3+1,y2+2,12zt2−2t3+1
K≔y2+2,−2t3+12zt2+1,x3−y3+1
UnivariatePolynomialx,K
x6+2x3+9
UnivariatePolynomialt,K
0
UnivariatePolynomialt,K,t,x,y
2t3−12zt2−1
IsZeroDimensionalK,t,x,y
true
aliasα=RootOfZ3+Z+1,β=RootOfZ5+Z4+2Z+3
α,β
L≔6x2β+7y2α+3x4,−4y2+4x2y2−6yα3
L≔3x4+7y2α+6x2β,−3yα3+2x2y2−2y2
UnivariatePolynomialx,L
4x12+16x10β+16x8β2−8x10−32x8β−32x6β2+4x8+16x6β+42x4α2+16x4β2+84x2α2β−21x4−42x2β
UnivariatePolynomialy,L
−24α2βy3+36α2βy2−12α2y3+28y5+36α2y2−24βy3−27α2y−12y3+27αy+27y
See Also
alias
Groebner[UnivariatePolynomial]
PolynomialIdeals[IsZeroDimensional]
Download Help Document