linear sym - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

ODEs Having Linear Symmetries

 

Description

Examples

Description

• 

The general forms of ODEs having one of the following linear symmetries

[xi=a+b*x, eta=0], [xi=a+b*y, eta=0], [xi=0, eta=c+d*x], [xi=0, eta=c+d*y]:

  

where the infinitesimal symmetry generator is given by:

G := f -> xi*diff(f,x) + eta*diff(f,y);

(1)
  

are given by:

ode[1] := DEtools[equinv]([xi=a+b*x, eta=0], y(x), 2);

(2)

ode[2] := DEtools[equinv]([xi=a+b*y, eta=0], y(x), 2);

(3)

ode[3] := DEtools[equinv]([xi=0, eta=c+d*x], y(x), 2);

(4)

ode[4] := DEtools[equinv]([xi=0, eta=c+d*y], y(x), 2);

(5)
  

Although the symmetries of these families of ODEs can be determined in a direct manner (using symgen), the simplicity of their pattern motivated us to have separate routines for recognizing them.

Examples

(6)

(7)

(8)

(9)

As an example that can be solved by the related routine, consider

(10)

(11)

See Also

DEtools

odeadvisor

dsolve,Lie

quadrature

missing

reducible

linear_ODEs

exact_linear

exact_nonlinear

sym_Fx

linear_sym

Bessel

Painleve

Halm

Gegenbauer

Duffing

ellipsoidal

elliptic

erf

Emden

Jacobi

Hermite

Lagerstrom

Laguerre

Liouville

Lienard

Van_der_Pol

Titchmarsh

odeadvisor,types

 


Download Help Document