ODEs Having Linear Symmetries
Description
Examples
The general forms of ODEs having one of the following linear symmetries
[xi=a+b*x, eta=0], [xi=a+b*y, eta=0], [xi=0, eta=c+d*x], [xi=0, eta=c+d*y]:
where the infinitesimal symmetry generator is given by:
G := f -> xi*diff(f,x) + eta*diff(f,y);
are given by:
ode[1] := DEtools[equinv]([xi=a+b*x, eta=0], y(x), 2);
ode[2] := DEtools[equinv]([xi=a+b*y, eta=0], y(x), 2);
ode[3] := DEtools[equinv]([xi=0, eta=c+d*x], y(x), 2);
ode[4] := DEtools[equinv]([xi=0, eta=c+d*y], y(x), 2);
Although the symmetries of these families of ODEs can be determined in a direct manner (using symgen), the simplicity of their pattern motivated us to have separate routines for recognizing them.
As an example that can be solved by the related routine, consider
See Also
DEtools
odeadvisor
dsolve,Lie
quadrature
missing
reducible
linear_ODEs
exact_linear
exact_nonlinear
sym_Fx
linear_sym
Bessel
Painleve
Halm
Gegenbauer
Duffing
ellipsoidal
elliptic
erf
Emden
Jacobi
Hermite
Lagerstrom
Laguerre
Liouville
Lienard
Van_der_Pol
Titchmarsh
odeadvisor,types
Download Help Document