RootToCartanSubalgebraElementH - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : LieAlgebras : RootToCartanSubalgebraElementH

LieAlgebras[RootToCartanSubalgebraElementH] - associate to each positive root of a simple Lie algebra a vector in the Cartan subalgebra

Calling Sequences

     RootToCartanSubalgebraElementH(RSD)

Parameters

          - a vector, defining a positive (or negative) root of a simple Lie algebra

     RSD   - a table, defining the root space decomposition of a simple Lie algebra

 

 

Description

Examples

Description

• 

 Let g be a simple Lie algebra, h a Cartan subalgebra, andthe root space decomposition of g with respect to h. For each root , there are vectors and  such that

and

These conditions uniquely determine Note that the vectors define the 3-dimensional Lie algebra . The assignment is used to calculate the Cartan matrix for the Lie algebra .

• 

The procedure RootToCartanSubalgebraElementH(RSD) returns the vector

Examples

 

Example 1.

We consider the Lie algebra This is the 24-dimensional real Lie algebra of 6×6 complex matrices  which are trace-free and skew-Hermitian with respect to the quadratic form  . We use the command SimpleLieAlgebraData to initialize this Lie algebra.

 

(2.1)

 

We use the command SimpleLieAlgebraProperties to obtain the Cartan subalgebra, the root space decomposition, and the simple roots.

su33 > 

 

The result is a table. Here is the Cartan subalgebra for

su33 > 

(2.2)

 

Here is the root space decomposition for

su33 > 

(2.3)

 

Here are the positive roots.

su33 > 

 

Let us find where  is the first root  

su33 > 

su33 > 

(2.4)

 

We check that is in the Cartan subalgebra.

su33 > 

(2.5)

 

Here are the root spaces for and

su33 > 

(2.6)
su33 > 

(2.7)

 

We check that defines a Lie subalgebra.

su33 > 

(2.8)

 

If we scale the vectors X and Y then the structure equations take the standard form for . 

su33 > 

(2.9)

 

Example 2.

We illustrate how to use RootToCartanSubalgebraElementH(RSD) to calculate the Cartan matrix for We first calculate the for the simple roots .

su33 > 

su33 > 

(2.10)

 

Then we calculate the Killing form , restricted to subspace [

su33 > 

 

The Cartan matrix is given by normalizing the entries of

su33 > 

 

The Lie algebra is a rank 5 simple Lie algebra of type "A". The matrix in  is therefore correct.

su33 > 

 

See Also

DifferentialGeometry

CartanMatrix

Killing

LieAlgebraData

RootSpace

SimpleLieAlgebraData

SimpleLieAlgebraProperties

 


Download Help Document