Christoffel - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[Christoffel] - find the Christoffel symbols of the first or second kind for a metric tensor

Calling Sequences

     Christoffel(g, h, keyword)

Parameters

   g       - a metric tensor on the tangent bundle of a manifold

   h       - (optional) the inverse of the metric g

   keyword - (optional) a keyword string, either "FirstKind" or "SecondKind"

 

Description

Examples

See Also

Description

• 

The Christoffel symbol of the second kind for a metric  is the unique torsion-free connection such that the associated covariant derivative operator  satisfies . It can be represented as a 3-index set of coefficients:

 

 

where  and  are the components of the metric and its inverse, respectively, and where a comma indicates a partial derivative.

• 

The Christoffel symbol of the first kind is the non-tensorial quantity obtained from the Christoffel symbol of the second kind by lowering its upper index with the metric:

 

• 

The default value for the keyword is "SecondKind", that is, the calling sequence Christoffel(g) computes the Christoffel symbol of the second kind.

• 

The inverse of the metric can be computed using InverseMetric.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form Christoffel(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-Christoffel.

Examples

 

Example 1.

First create a 2 dimensional manifold  and define a metric  on the tangent space of .

(2.1)

(2.2)

 

Calculate the Christoffel symbols of the first and second kind for .

(2.3)

(2.4)

(2.5)

(2.6)

 

Example 2.

Define an anholonomic frame on  and use this frame to calculate the Christoffel symbol for a metric on the tangent space of .

 

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

See Also

DifferentialGeometry, Tensor, CovariantDerivative, Physics[D_], CurvatureTensor, Physics[Riemann], DirectionalCovariantDerivative, GeodesicEquations, ParallelTransportEquations, TorsionTensor


Download Help Document