IsotropySubalgebra - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


GroupActions[IsotropySubalgebra] - find the infinitesimal isotropy subalgebra of a Lie algebra of vector fields and the representation of the isotropy subalgebra on the tangent space

Calling Sequences

     IsotropySubalgebra(Gamma, p, option)

Parameters

     Gamma     - a list of vector fields on a manifold M

     p         - a list of equations x1 = p1, x2 = p2, ... specifying the coordinates of point p  M

     option    - the optional argument output = O, where O is a list containing the keywords "Vector", "Representation", and/or the name of an initialized abstract algebra for the Lie algebra of vector fields Gamma. 

 

Description

Examples

Description

• 

Let Γ be a Lie algebra of vector fields on a manifold M and letp M. The isotropy subalgebra  Γp of the Lie algebra of vector fields Γ at the point p is defined by Γp = {X Γ |Xp= 0}. The Lie bracket of vector fields defines a natural representation ρ of Γp on the tangent space TpM  by ρXY = X, Y for X Γp ,Y TpM and Y any vector field on M such that Yp =Y. The representation ρ is called the linear isotropy representation.

• 

IsotropySubalgebra(Gamma, p) returns a list of vectors whose span defines the isotropy subalgebra Γpas a subalgebra of  Γ.

• 

With output = ["Vector", "Representation"], two lists are returned. The first is a list of vectors giving the isotropy subalgebra Γpas a subalgebra of  Γ and the second is the list of matrices defining the linear isotropy representation with respect to the standard basis for TpM.

• 

Let algname be the name of the abstract Lie algebra 𝔤 created from Γ. With output = ["Vector", algname], the second list returned gives the isotropy subalgebra as a subalgebra of the abstract Lie algebra 𝔤.

• 

The command IsotropySubalgebra is part of the DifferentialGeometry:-GroupActions package.  It can be used in the form IsotropySubalgebra(...) only after executing the commands with(DifferentialGeometry) and with(GroupActions), but can always be used by executing DifferentialGeometry:-GroupActions:-IsotropySubalgebra(...).

Examples

withDifferentialGeometry:withGroupActions:withLibrary:withLieAlgebras:

 

Example 1.

We use the Retrieve command to obtain a Lie algebra of vector fields in the paper by Gonzalez-Lopez, Kamran, and Olver from the DifferentialGeometry Library. We compute the isotropy subalgebra and isotropy representation at the points x =0, y = 0 and x =1, y =1. 

DGsetupx,y,M:

M > 

GRetrieveGonzalez-Lopez,1,5,manifold=M

G:=D_x,D_y,D_xxD_yy,yD_x,xD_y

(2.1)
M > 

LLieAlgebraDataG,Alg1

L:=e1,e3=e1,e1,e5=e2,e2,e3=e2,e2,e4=e1,e3,e4=2e4,e3,e5=2e5,e4,e5=e3

(2.2)
M > 

DGsetupL

Lie algebra: Alg1

(2.3)
Alg1 > 

MultiplicationTableLieTable

 

We illustrate some different possible outputs from the IsotropySubalgebra program.

Alg1 > 

Iso1IsotropySubalgebraG,x=0,y=0

Iso1:=D_xxD_yy,yD_x,xD_y

(2.4)
M > 

Iso1,A1IsotropySubalgebraG,x=0,y=0,output=Vector,Alg1

Iso1,A1:=D_xxD_yy,yD_x,xD_y,e3,e4,e5

(2.5)
Alg1 > 

Iso1,A1,S1IsotropySubalgebraG,x=0,y=0,output=Vector,Alg1,Representation

Alg1 > 

A1IsotropySubalgebraG,x=0,y=0,output=Alg1

A1:=e3,e4,e5

(2.6)
Alg1 > 

Iso2,A2,S2IsotropySubalgebraG,x=1,y=1,output=Vector,Alg1,Representation

Note that the vectors in Iso2 all vanish at x =1, y =1. 

 

It is apparent from the multiplication table that the pair Alg1, S1 is a symmetric pair with respect to the complementary subspace T = e1, e2. We can check this with the command Query/"SymmetricPair".

Alg1 > 

QueryA1,e1,e2,SymmetricPair

true

(2.7)

 

The linear isotropy representation can be converted to a representation.

Alg1 > 

L2LieAlgebraDataA1,iso1

L2:=e1,e2=2e2,e1,e3=2e3,e2,e3=e1

(2.8)
Alg1 > 

DGsetupL2

Lie algebra: iso1

(2.9)
iso1 > 

ρRepresentationiso1,M,S1

iso1 > 

Queryρ,Representation

true

(2.10)

See Also

DifferentialGeometry

GroupActions

Library

LieAlgebras

LieAlgebraData

MultiplicationTable

Query

Representation

Retrieve