Derivations - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


LieAlgebras[Derivations] - find the derivations of a Lie algebra, find the derivations of a general non-commutative algebra

Calling Sequences

     Derivations(Algname, "keyword")

Parameters

     Algname   - (optional) name or string, the name of a Lie algebra

     keyword   - one of the 3 keywords "Inner", "Full", or "Outer"

 

Description

Examples

Description

• 

 Let 𝔤 be a n-dimensional Lie algebra. An n × n matrix B is a derivation for 𝔤  if the associated linear transformation mapping LB : 𝔤 𝔤 satisfies

LBx,y = LBx, y + x, LABy)  for all x, y 𝔤.

The set of all derivations defines a matrix Lie algebra denoted by Der𝔤. For each x 𝔤, the adjoint matrix adx is a derivation -- these are the inner derivations InnDer(𝔤). The inner derivations define an ideal in Der(𝔤)and the quotient Lie algebra Der(𝔤)/InnDer(𝔤) is the Lie algebra of outer derivations.

• 

Let 𝔸 be a n-dimensional Lie algebra (such as the octonion, a Jordan algebra, or a Clifford algebra. See AlgebraLibraryData). An n × n matrix B is a derivation for 𝔸 if the associated linear transformation mapping LB : 𝔸 𝔸 satisfies

LBxy = LBxy+ xLBy  for all x, y 𝔸.

• 

Derivations(Algname, "Inner") returns a list of linearly independent matrices which defines a basis for the Lie algebra of inner derivations for the Lie algebra Algname.

• 

Derivations(Algname) or Derivations(Algname, "Full") returns a list of linearly independent matrices which defines a basis for the Lie algebra of all derivations for the Lie algebra Algname.

• 

Derivations(Algname, "Outer") returns a list of linearly independent matrices which gives a representative list of the outer derivations for the Lie algebra Algname.

• 

If Algname is a general non-commutative algebra, then Derivations(Algname) computes the derivations of this algebra.

• 

The command Derivations is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form Derivations(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Derivations(...).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

First initialize a Lie algebra and display the Lie bracket multiplication table.

 

L1_DGLieAlgebra,Alg1,4,1,4,1,1,2,4,1,1,2,4,2,1,3,4,3,1:

DGsetupL1:

Alg1 > 

MultiplicationTableLieBracket

e1,e4=e1,e2,e4=e1+e2,e3,e4=e3

(2.1)

 

For the Lie algebra Alg1 we find that Derivations(Alg1, "Inner") is 4 dimensional and Derivations(Alg1) is 8 dimensional.

Alg1 > 

InnerDerivationsInner

Alg1 > 

DerDerivationsFull

Alg1 > 

OuterDerivationsOuter

 

We can study the properties of Derivations(Alg1) by initializing these matrices as a Lie algebra. We use as a basis for Derivations(Alg1) the inner and outer derivations.

Alg1 > 

BasisopInner,opOuter:

Alg1 > 

L2LieAlgebraDataBasis,DerAlg

L2:=e1,e2=e2,e1,e3=e2+e3,e1,e4=e4,e2,e5=e2,e3,e5=e3,e3,e6=e2,e3,e8=e4,e4,e7=e2,e5,e7=e7,e5,e8=e8,e7,e8=e6

(2.2)
Alg1 > 

DGsetupL2,E,a:

 

We see that the derivation algebra is solvable.

DerAlg > 

QuerySolvable

true

(2.3)

 

We check that the span of the vectors E1, E2, E3, E4(corresponding to the inner derivations) define an ideal.

DerAlg > 

QueryE1,E2,E3,E4,Ideal

true

(2.4)

 

We compute the quotient algebra of outer derivations.

DerAlg > 

L3QuotientAlgebraE1,E2,E3,E4,E5,E6,E7,E8,OuterAlg

L3:=e1,e3=e3,e1,e4=e4,e3,e4=e2

(2.5)
DerAlg > 

DGsetupL3

Lie algebra: OuterAlg

(2.6)

 

Example 2.

We show that the derivations of the octonions form a 14-dimensional semi-simple Lie algebra (which can be seen to be compact real form of the exceptional Lie algebra g2).

 

L4AlgebraLibraryDataOctonions,Oct

L4:=e12=e1,e1.e2=e2,e1.e3=e3,e1.e4=e4,e1.e5=e5,e1.e6=e6,e1.e7=e7,e1.e8=e8,e2.e1=e2,e22=e1,e2.e3=e4,e2.e4=e3,e2.e5=e6,e2.e6=e5,e2.e7=e8,e2.e8=e7,e3.e1=e3,e3.e2=e4,e32=e1,e3.e4=e2,e3.e5=e7,e3.e6=e8,e3.e7=e5,e3.e8=e6,e4.e1=e4,e4.e2=e3,e4.e3=e2,e42=e1,e4.e5=e8,e4.e6=e7,e4.e7=e6,e4.e8=e5,e5.e1=e5,e5.e2=e6,e5.e3=e7,e5.e4=e8,e52=e1,e5.e6=e2,e5.e7=e3,e5.e8=e4,e6.e1=e6,e6.e2=e5,e6.e3=e8,e6.e4=e7,e6.e5=e2,e62=e1,e6.e7=e4,e6.e8=e3,e7.e1=e7,e7.e2=e8,e7.e3=e5,e7.e4=e6,e7.e5=e3,e7.e6=e4,e72=e1,e7.e8=e2,e8.e1=e8,e8.e2=e7,e8.e3=e6,e8.e4=e5,e8.e5=e4,e8.e6=e3,e8.e7=e2,e82=e1

(2.7)

DGsetupL4:

 

We find that the derivation algebra is 14-dimensional

DerDerivationsOct

nopsDer

14

(2.8)

 

Calculate the structure equations for the derivations, initialize ,and check that the derivation algebra is semi-simple.

Oct > 

L5LieAlgebraDataDer,Alg5

L5:=e1,e2=e7,e1,e3=e8,e1,e4=e5e9,e1,e5=e4e10,e1,e6=e11,e1,e7=e2,e1,e8=e3,e1,e9=e4e10,e1,e10=e5+e9,e1,e11=e6,e1,e12=e13,e1,e13=e12,e2,e3=e5,e2,e4=2e6,e2,e5=e3,e2,e6=2e4,e2,e7=e1,e2,e8=e4,e2,e9=e3e11,e2,e10=e6,e2,e11=e5+e9,e2,e12=e14,e2,e14=e12,e3,e4=e12,e3,e5=2e22e13,e3,e6=e14,e3,e7=e10,e3,e8=e1,e3,e9=e2+e13,e3,e10=e7,e3,e12=e4,e3,e13=e5,e3,e14=e6,e4,e5=e14,e4,e6=2e2,e4,e7=e11,e4,e8=e2,e4,e9=e1+e14,e4,e11=e7,e4,e12=e3,e4,e13=e6,e4,e14=e5,e5,e6=e12,e5,e7=e6e8,e5,e8=e7e12,e5,e10=e1+e14,e5,e11=e2e13,e5,e12=e6,e5,e13=e3,e5,e14=e4,e6,e7=e5e9,e6,e9=e7e12,e6,e10=e2,e6,e11=e1,e6,e12=e5,e6,e13=e4,e6,e14=e3,e7,e8=e9,e7,e9=e8,e7,e10=2e11,e7,e11=2e10,e7,e13=e14,e7,e14=e13,e8,e9=2e72e12,e8,e10=e13,e8,e11=e14,e8,e12=e9,e8,e13=e10,e8,e14=e11,e9,e10=e14,e9,e11=e13,e9,e12=e8,e9,e13=e11,e9,e14=e10,e10,e11=2e7,e10,e12=e11,e10,e13=e8,e10,e14=e9,e11,e12=e10,e11,e13=e9,e11,e14=e8,e12,e13=2e14,e12,e14=2e13,e13,e14=2e12

(2.9)
Oct > 

DGsetupL5

Lie algebra: Alg5

(2.10)
Oct > 

QuerySemisimple

true

(2.11)

 

 

 

 

See Also

DifferentialGeometry

LieAlgebras

Adjoint

Query

Query[Derivation]

Query[Ideal]

Query[Solvable]

QuotientAlgebra