MultiplicationTable - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


LieAlgebras[MultiplicationTable] - display the multiplication table of a Lie algebra or a general non-commutative algebra

Calling Sequences

     MultiplicationTable(LieAlgebraName, keyword)

Parameters

     LieAlgebraName  - (optional) name or string, the name assigned to a Lie algebra

     keyword         - keyword string, one of "LieBracket", "ExteriorDerivative", "LieDerivative", "AlgebraTable"

 

Description

Examples

Description

• 

MultiplicationTable(LieAlgebraName, keyword) displays the form of structure equations for the Lie algebra or algebra dictated by the keyword.

• 

If the keyword is "LieBracket", then the Lie brackets ei, ej of the basis elements e1, e2, ..., en are displayed in a two-dimensional array.

• 

If the keyword is "AlgebraTable", then the non-commutative products eiej of the basis elements e1, e2, ..., en are displayed in a two-dimensional array.

• 

If the keyword is "ExteriorDerivative", then the exterior derivatives dθiof the dual basis elements θ1, θ2, ... , θn are printed.

• 

If the keyword is "LieDerivative", then the Lie derivatives ℒeiθj of the dual 1-forms θ1, θ2, ... , θn with respect to the basis vectors e1, e2, ..., en are displayed in a two-dimensional array.

• 

If LieAlgebraName is omitted, then the appropriate multiplication table of the current algebra is displayed.

• 

The command MultiplicationTable is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form MultiplicationTable(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-MultiplicationTable(...).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

First we initialize a 5 dimensional Lie algebra.

L1_DGLieAlgebra,Alg1,5,2,3,1,1,2,5,3,1,4,5,4,1:

DGsetupL1:

 

Display the Lie bracket multiplication table.

Alg1 > 

MultiplicationTableLieBracket

e2,e3=e1,e2,e5=e3,e4,e5=e4

(2.1)

 

Display the exterior derivatives of the dual 1-forms.

Alg1 > 

MultiplicationTableExteriorDerivative

dθ1=θ2θ3

dθ2=0θ1θ2

dθ3=θ2θ5

dθ4=θ4θ5

dθ5=0θ1θ2

(2.2)

 

Display the Lie derivatives of the dual 1-forms.

Alg1 > 

MultiplicationTableLieDerivative

 

Example 2.

We initialize a 4 dimensional Lie algebra. Instead of using the standard default labels for the basis vectors we use X, Y, U,V and for the dual 1-forms we use α, β, σ, τ.

Alg1 > 

L2_DGLieAlgebra,Alg1,4,2,3,1,1,2,4,3,1,4,2,4,1:

Alg1 > 

DGsetupL2,X,Y,U,V,α,β,σ,τ:

 

Display the Lie bracket multiplication table.

Alg1 > 

MultiplicationTableLieBracket

e2,e3=e1,e2,e4=e3

(2.3)

 

Display the exterior derivatives of the dual 1-forms.

Alg1 > 

MultiplicationTableExteriorDerivative

dα=βσ

dβ=0αβ

dσ=βτ

dτ=βτ

(2.4)

 

Display the Lie derivatives of the dual 1-forms.

Alg1 > 

MultiplicationTableLieDerivative

 

Example 3. 

We initialize the quaternions ℍ and display the multiplication table.

   

Alg1 > 

L3AlgebraLibraryDataQuaternions,H

L3:=e12=e1,e1.e2=e2,e1.e3=e3,e1.e4=e4,e2.e1=e2,e22=e1,e2.e3=e4,e2.e4=e3,e3.e1=e3,e3.e2=e4,e32=e1,e3.e4=e2,e4.e1=e4,e4.e2=e3,e4.e3=e2,e42=e1

(2.5)
Alg1 > 

DGsetupL3,e,i,j,k,θ

algebra name: H

(2.6)
Alg1 > 

MultiplicationTableAlgebraTable

See Also

DifferentialGeometry

LieAlgebras

ExteriorDerivative

LieBracket

LieDerivative