known_functions - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


FunctionAdvisor/known_functions

return a list of the mathematical function's names known by FunctionAdvisor

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

FunctionAdvisor(known_functions)

Parameters

known_functions

-

literal name; 'known_functions'

Description

• 

The FunctionAdvisor(known_functions) command returns a list of the mathematical function's names implemented in the Maple system.

Examples

FunctionAdvisorknown_functions

The functions on which information is available via
    > FunctionAdvisor( function_name );
are:

AiryAi,AiryBi,AngerJ,AppellF1,AppellF2,AppellF3,AppellF4,BellB,BesselI,BesselJ,BesselK,BesselY,Β,ChebyshevT,ChebyshevU,Chi,Ci,CoulombF,CylinderD,CylinderU,CylinderV,Dirac,Ei,EllipticCE,EllipticCK,EllipticCPi,EllipticE,EllipticF,EllipticK,EllipticModulus,EllipticNome,EllipticPi,FresnelC,FresnelS,Fresnelf,Fresnelg,Γ,GaussAGM,GegenbauerC,GeneralizedPolylog,HankelH1,HankelH2,Heaviside,HermiteH,HeunB,HeunBPrime,HeunC,HeunCPrime,HeunD,HeunDPrime,HeunG,HeunGPrime,HeunT,HeunTPrime,Hypergeom,,InverseJacobiAM,InverseJacobiCD,InverseJacobiCN,InverseJacobiCS,InverseJacobiDC,InverseJacobiDN,InverseJacobiDS,InverseJacobiNC,InverseJacobiND,InverseJacobiNS,InverseJacobiSC,InverseJacobiSD,InverseJacobiSN,JacobiAM,JacobiCD,JacobiCN,JacobiCS,JacobiDC,JacobiDN,JacobiDS,JacobiNC,JacobiND,JacobiNS,JacobiP,JacobiSC,JacobiSD,JacobiSN,JacobiTheta1,JacobiTheta2,JacobiTheta3,JacobiTheta4,JacobiZeta,KelvinBei,KelvinBer,KelvinHei,KelvinHer,KelvinKei,KelvinKer,KummerM,KummerU,LaguerreL,LambertW,LegendreP,LegendreQ,LerchPhi,Li,LommelS1,LommelS2,MathieuA,MathieuB,MathieuC,MathieuCE,MathieuCEPrime,MathieuCPrime,MathieuExponent,MathieuFloquet,MathieuFloquetPrime,MathieuS,MathieuSE,MathieuSEPrime,MathieuSPrime,MeijerG,MultiPolylog,NielsenPolylog,Ψ,,Shi,Si,SphericalY,Ssi,Stirling1,Stirling2,StruveH,StruveL,WeberE,WeierstrassP,WeierstrassPPrime,WeierstrassSigma,WeierstrassZeta,WhittakerM,WhittakerW,Wrightomega,Ζ,abs,arccos,arccosh,arccot,arccoth,arccsc,arccsch,arcsec,arcsech,arcsin,arcsinh,arctan,arctanh,argument,bernoulli,binomial,conjugate,cos,cosh,cot,coth,csc,csch,csgn,dawson,dilog,doublefactorial,erf,erfc,erfi,euler,exp,factorial,harmonic,hypergeom,ln,lnGAMMA,log,max,min,piecewise,pochhammer,polylog,sec,sech,signum,sin,sinh,tan,tanh,unwindK

(1)

You can get a table of information for each function by specifying the function and the table keyword.

info_arccotFunctionAdvisortable,arccot

arccot belongs to the subclass "arctrig" of the class "elementary" and so, in principle, it can be related to various of the 26 functions of those classes - see FunctionAdvisor( "arctrig" ); and FunctionAdvisor( "elementary" );

info_arccottablesingularities=arccotz&comma;z=+I&comma;describe=arccot=inverse cotangent function&comma;differentiation_rule=&DifferentialD;&DifferentialD;zarccotz=1z2+1&comma;&DifferentialD;n&DifferentialD;znarccotz=arccotzn=02n1MeijerG0&comma;0&comma;12&comma;&comma;0&comma;12+n2&comma;n2&comma;z2z1notherwise&comma;special_values=arccot−1=3π4&comma;arccot33=2π3&comma;arccot3=5π6&comma;arccot0=π2&comma;arccot3=π6&comma;arccot33=π3&comma;arccot1=π4&comma;arccot=0&comma;arccot=π&comma;DE=fz=arccotz&comma;&DifferentialD;&DifferentialD;zfz=1z2+1&comma;definition=arccotz=π2Iln1Izln1+Iz2&comma;with no restrictions on z&comma;series=seriesarccotz&comma;z&comma;4=π2z+13z3+Oz5&comma;branch_points=arccotz&comma;z−I&comma;I&comma;classify_function=arctrig&comma;elementary&comma;calling_sequence=arccotz&comma;branch_cuts=arccotz&comma;zComplexRangeI&comma;−IzComplexRangeI&comma;I&comma;symmetries=arccotz=πarccotz&comma;arccotz&conjugate0;=arccotz&conjugate0;&comma;notzComplexRangeI&comma;−IorzComplexRangeI&comma;I&comma;identities=cotarccotz=z&comma;cotarccotz+arccoty=yz1z+y&comma;asymptotic_expansion=asymptarccotz&comma;z&comma;4=1z13z3+O1z5&comma;sum_form=arccotz=_k1=0zIz_k1+−Iz_k12_k1+1+π2&comma;z<1&comma;integral_form=arccotz=1+Iz1IzI2_k1&DifferentialD;_k1+π2&comma;with no restrictions on z&comma;periodicity=arccotz&comma;No periodicity

(2)

info_arccotdescribe

arccot=inverse cotangent function

(3)

info_arccotdefinition

arccotz=π2Iln1Izln1+Iz2&comma;with no restrictions on z

(4)

See Also

FunctionAdvisor

FunctionAdvisor/function_classes

FunctionAdvisor/topics