AllHamiltonianGroups - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : AllHamiltonianGroups

GroupTheory

  

HamiltonianGroup

  

construct a finite Hamiltonian group

  

NumHamiltonianGroups

  

find the number of Hamiltonian groups of a given order

  

AllHamiltonianGroups

  

find all Hamiltonian groups of a given order

 

Calling Sequence

Parameters

Options

Description

Examples

Compatibility

Calling Sequence

HamiltonianGroup( n, k )

NumHamiltonianGroups( n )

AllHamiltonianGroups( n )

Parameters

n

-

a positive integer

k

-

a positive integer

Options

• 

formopt : option of the form form = "permgroup" or form = "fpgroup"

• 

outopt : option of the form output = "list" or output = "iterator"

Description

• 

A group is Hamiltonian if it is non-Abelian, and if every subgroup is normal. Every Hamiltonian group has the quaternion group as a direct factor, so the order of every finite Hamiltonian group is a multiple of 8.

• 

For a positive integer n, the NumHamiltonianGroups( n ) command returns the number of Hamiltonian groups of order n. (This is 0 if n is not a multiple of 8.)

• 

The HamiltonianGroup( n, k ) command returns the k-th Hamiltonian group of order n. An exception is raised if n is not a multiple of 8.

• 

The AllHamiltonianGroups( n ) command returns an expression sequence of all the Hamiltonian groups of order n, where n is a positive integer. Note that NULL is returned if n is not a multiple of 8.

• 

The HamiltonianGroup and AllHamiltonianGroups commands accept an option of the form form = F, where F may be either of the strings "permgroup" (the default), or "fpgroup".

• 

The AllHamiltonianGroups command accepts an option of the form output = "list" (the default) or output = "iterator". By default, a sequence of the Hamiltonian groups of order n is returned. If you pass the option output = "iterator" to AllHamiltonianGroups, then an iterator object is returned instead.

Examples

withGroupTheory:

There is an unique Hamiltonian group of each 2-power greater than or equal to 8.

seqNumHamiltonianGroups2i,i=1..20

0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

(1)

There are no Hamiltonian groups of order 25.

NumHamiltonianGroups25

0

(2)

NumHamiltonianGroups432

3

(3)

GHamiltonianGroup432,2

G < a permutation group on 22 letters with 5 generators >

(4)

IsHamiltonianG

true

(5)

AllHamiltonianGroups432&comma;&apos;form&apos;&equals;fpgroup

_x3&comma;_x4&comma;_x5&comma;_x6&comma;_x7&comma;_x8_x52&comma;_x63&comma;_x73&comma;_x83&comma;_x34&comma;_x32_x42&comma;_x3_x4_x3-1_x4&comma;_x5-1_x3-1_x5_x3&comma;_x5-1_x4-1_x5_x4&comma;_x6-1_x3-1_x6_x3&comma;_x6-1_x4-1_x6_x4&comma;_x6-1_x5-1_x6_x5&comma;_x7-1_x3-1_x7_x3&comma;_x7-1_x4-1_x7_x4&comma;_x7-1_x5-1_x7_x5&comma;_x7-1_x6-1_x7_x6&comma;_x8-1_x3-1_x8_x3&comma;_x8-1_x4-1_x8_x4&comma;_x8-1_x5-1_x8_x5&comma;_x8-1_x6-1_x8_x6&comma;_x8-1_x7-1_x8_x7,_x12&comma;_x13&comma;_x14&comma;_x15&comma;_x16_x142&comma;_x153&comma;_x124&comma;_x122_x132&comma;_x12_x13_x12-1_x13&comma;_x14-1_x12-1_x14_x12&comma;_x14-1_x13-1_x14_x13&comma;_x15-1_x12-1_x15_x12&comma;_x15-1_x13-1_x15_x13&comma;_x15-1_x14-1_x15_x14&comma;_x16-1_x12-1_x16_x12&comma;_x16-1_x13-1_x16_x13&comma;_x16-1_x14-1_x16_x14&comma;_x16-1_x15-1_x16_x15&comma;_x169,_x20&comma;_x21&comma;_x22&comma;_x23_x222&comma;_x204&comma;_x202_x212&comma;_x20_x21_x20-1_x21&comma;_x22-1_x20-1_x22_x20&comma;_x22-1_x21-1_x22_x21&comma;_x23-1_x20-1_x23_x20&comma;_x23-1_x21-1_x23_x21&comma;_x23-1_x22-1_x23_x22&comma;_x2327

(6)

itAllHamiltonianGroups194400000&comma;&apos;output&apos;&equals;iterator

it&lang;Hamiltonian Groups Iterator for Order 194400000&rang;

(7)

nopsseqit

49

(8)

Compatibility

• 

The GroupTheory[HamiltonianGroup], GroupTheory[NumHamiltonianGroups] and GroupTheory[AllHamiltonianGroups] commands were introduced in Maple 2019.

• 

For more information on Maple 2019 changes, see Updates in Maple 2019.

See Also

GroupTheory

GroupTheory[IsHamiltonian]

GroupTheory[NumGroups]