SymplecticGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : SymplecticGroup

GroupTheory

  

SymplecticGroup

  

construct a permutation group isomorphic to a symplectic group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

SymplecticGroup(n, q)

Sp(n, q)

Parameters

n

-

an even positive integer

q

-

power of a prime number

Description

• 

The symplectic group Spn,q  is the group of all n×n matrices over the field with q elements that respect a fixed nondegenerate symplectic form. The integer n must be even.

• 

The SymplecticGroup( n, q ) command returns a permutation group isomorphic to the symplectic group Spn,q  .

• 

Note that for n=2 the groups Spn,q  and SLn,q  are isomorphic, so that a special linear group is returned in this case.

• 

If either, or both, of n and q is non-numeric, then a symbolic group representing the symplectic group is returned.

• 

The Sp( n, q ) command is provided as an abbreviation.

• 

In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.

Examples

withGroupTheory:

GSymplecticGroup4,5

GSp4,5

(1)

ifactorGroupOrderG

27325413

(2)

GroupOrderSylowSubgroup2,G

128

(3)

S3SylowSubgroup3,G

S3⟨a permutation group on 624 letters with 2 generators⟩

(4)

GroupOrderS3

9

(5)

IsCyclicS3

false

(6)

IdentifySmallGroupS3

9,2

(7)

GroupOrderSylowSubgroup5,G

625

(8)

IsTrivialPCore5,G

true

(9)

GroupOrderSylowSubgroup13,G

13

(10)

GSymplecticGroup4,3

GSp4,3

(11)

DegreeG

80

(12)

IsSimpleG

false

(13)

GroupOrderCentreG

2

(14)

For n=2 the corresponding special linear group is returned.

SymplecticGroup2,5

SL2,5

(15)

Note the exceptional isomorphism:

AreIsomorphicSymplecticGroup4,2,Symm6

true

(16)

GSymplecticGroup6,q

GSp6,q

(17)

GroupOrderG

q9q21q41q61

(18)

ClassNumberSymplecticGroup8,q

5q+q+1q+4q2+q2+q+3q+q4+q3+7q::even25q+51+q+4q+11q2+q2+4q+10q+q4+4q3otherwise

(19)

ClassNumberSymplecticGroup4,11kassumingk::posint

511k+10+11k2

(20)

Compatibility

• 

The GroupTheory[SymplecticGroup] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

• 

The GroupTheory[SymplecticGroup] command was updated in Maple 2020.

See Also

GroupTheory[AreIsomorphic]

GroupTheory[ClassNumber]

GroupTheory[Degree]

GroupTheory[Generators]

GroupTheory[GroupOrder]

GroupTheory[ProjectiveSymplecticGroup]

GroupTheory[SpecialLinearGroup]

GroupTheory[SymmetricGroup]