GeneralizedExponents - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

LREtools

  

GeneralizedExponents

  

compute the generalized exponents of a difference operator

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

GeneralizedExponents(L, K)

GeneralizedExponents(L, x, tau, K)

Parameters

L

-

linear difference operator

x

-

name for the independent variable

tau

-

name for the shift operator

K

-

(optional) set of algebraic extensions

Description

• 

If  is the shift operator, then a difference operator  =  + ... +  represents a recurrence relation  + ... +  = 0. A generalized exponent of  is an algebraic expression that encodes the asymptotic behavior (as  -> ) of a solution of . A precise definition is found in section 4 in the reference below, but a description in terms of examples is given here.

• 

A non-zero solution  of  corresponds to a first-order right-hand factor  of  where  =  = . If  is a rational function then  is called a hypergeometric solution but that is not assumed here.

• 

The asymptotic behavior of  as  ->  is determined by the asymptotic behavior of  as  -> , which in turn can be represented with a series expansion at . Ignoring logarithmic terms, this expansion takes the form  =  (1 +  +  + ...) for some constants , , , ..., a rational number v, and positive integer .

• 

The only terms  in this sum with a significant contribution to the asymptotic behavior of  are terms with . Discarding terms with  and logarithmic terms, what remains is the generalized exponent  :=  (1 +  +  + ... ) for a solution .

• 

For example, if  is a polynomial solution of degree , then   = constant  ( + less dominant terms). Then  = 1 +  + less dominant terms, and so  is the generalized exponent of .

• 

If  then , so in this case the generalized exponent of  is . If  then  and so  in this example.

• 

Multiplying solutions corresponds to multiplying generalized exponents (and deleting terms  with ). So if  is a solution of , then  is a generalized exponent of . This is used in LREtools[hypergeomsols] to narrow the search.

• 

Fractional powers of  can only appear if  has order > 1 because  is at most the order. The GeneralizedExponents command will represent  in the form   ...   where  for some constant  and rational number . Each , , ... is of the form  for some constant  and rational number 0 <  < 1, and will be given implicitly in the form of an equation. In the output, each  is presented as a list, in which each variable is , , ... is defined in terms of prior variables. The notation  = list means that  runs through all elements of that list, which may contain duplicates because generalized exponents have multiplicities.

• 

Counting with multiplicities, the number of generalized exponents will be equal to the order of , however, the algorithm will only give one  in every conjugacy class over (()), where  is the smallest field of constants that contains the coefficients of  as well as the extensions in the optional argument .

• 

The generalized exponents of any right-factor  of  form a subset of the generalized exponents of . This is used to compute right-factors efficiently, and makes it possible to quickly compute degree-bounds for right-factors of .

Examples

(1)

(2)

(3)

The optional argument K was omitted, so the field of constants is Q here. The equation T1^2 = x has two solutions, and so although the output lists only one e, it represents T1  (1 - (1/4)/x) for both T1 = x^(1/2) and for T1 = -x^(1/2). Counted this way, the number of generalized exponents matches the order of the input.

The names for the independent variable and the shift operator may be omitted from the input when they have been assigned to _Env_LRE_x and _Env_LRE_tau:

(4)

(5)

(6)

Any operator with L as right-factor will have L's generalized exponents (for left factors, this holds for terms other than the N/x term). This helps to detect factors efficiently.

(7)

(8)

This contains the generalized exponents of each right-factor of L2, see

(9)

and

(10)

References

  

Y. Cha, M. van Hoeij, G. Levy.  "Solving Recurrence Relations using Local Invariants." ISSAC'2010 Proceedings.

Compatibility

• 

The LREtools[GeneralizedExponents] command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

LREtools

LREtools[hypergeomsols]

LREtools[LCLM]

LREtools[RightFactors]

 


Download Help Document