LieDerivative - Maple Help

Online Help

All Products    Maple    MapleSim


LieDerivative

calculate the Lie derivative of an algebraic expression, a vector field or a one-form with respect to a vector field

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

LieDerivative( X, vf )

Parameters

X

-

an algebraic expression, a VectorField object, or a OneForm object

vf

-

a VectorField object that is on the same space as X

Description

• 

If X is an algebraic expression then LieDerivative(X, vf) is the directional derivative vf(X) of X in the direction of the vector field vf.

• 

If X is a VectorField object then LieDerivative(X, vf) is the VectorField object defined by the Lie bracket [vf, X] = LieBracket(vf, X). See LieBracket for more detail.

• 

If X is a OneForm object then omega = LieDerivative(X, vf) is the OneForm object defined by omega(Y) = vf(omega(Y)) - omega([Y,vf]), where Y is any vector field on the same space as X.

• 

This method is associated with the VectorField and OneForm objects. For more detail, see Overview of the VectorField object, Overview of the OneForm object.

Examples

withLieAlgebrasOfVectorFields:

The vector fields X,Y live on the same space (x,y).

XVectorFieldDx,space=x,y

Xx

(1)

 

RVectorFieldyDx+xDy

Ryx+xy

(2)

 

LieDerivativeax2y2,X

2ax

(3)

These two commands are equivalent when Y is a vector field. And it returns a vector field.

LieDerivativeR,X

y

(4)

 

LieBracketX,R

y

(5)

 

ωOneFormxdxydy

ωxdxydy

(6)

 

LieDerivativeω,R

2ydx2xdy

(7)

Compatibility

• 

The LieDerivative command was introduced in Maple 2020.

• 

For more information on Maple 2020 changes, see Updates in Maple 2020.

See Also

VectorField (Object overview)

OneForm (Object overview)

LieAlgebrasOfVectorFields[VectorField]

LieAlgebrasOfVectorFields[OneForm]

LieBracket