constructor - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


LieAlgebrasOfVectorFields

  

LAVF

  

construct a LAVF object

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

LAVF(vf, dq)

LAVF(vf, str)

Parameters

vf

-

a VectorField object

dq

-

a LHPDE object

str

-

a string: either "trivial" or "universal"

Description

• 

The command LAVF(...) is for constructing a LAVF object. A valid LAVF object then has access to at least 60 methods which allow it to be manipulated and its contents queried. For more detail, see Overview of the LAVF object.

• 

In the first calling sequence, the input argument vf must be a type VectorField whose components are indeterminant functionals (as infinitesimals), and dq must be a type LHPDE object whose dependent variables include all components of vf.

• 

For convenience the second calling sequence is a special constructor for either a trivial LAVF object or a universal LAVF object. A trivial LAVF object means its determining system is trivial (i.e. only the zero solution). For example, let V be a VectorField object containing indeterminant infinitesimals, a call LAVF(V,"trivial") is equal to the call LAVF(V, LHPDE("trivial", dep = GetComponents(V), indep = GetSpace(V))). And a universal LAVF object has empty system (i.e. no restriction on solutions).

• 

This command is part of the LieAlgebrasOfVectorFields package. For more detail, see Overview of the LieAlgebrasOfVectorFields package.

• 

This command can be used in the form LAVF(...) only after executing the command with(LieAlgebrasOfVectorFields), but can always be used in the form :-LieAlgebrasOfVectorFields:-LAVF(...).

Examples

withLieAlgebrasOfVectorFields:

Typesetting:-Settingsuserep=true:

Typesetting:-Suppressξx,y,ηx,y:

We first construct a vector field and a LHPDE object for representing the determining system for E(2).

VVectorFieldξx,y,x,ηx,y,y,space=x,y

Vξⅆⅆx+ηⅆⅆy

(1)

E2SysLHPDEdiffξx,y,y,y=0,diffηx,y,x+diffξx,y,y=0,diffηx,y,y=0,diffξx,y,x=0,dep=ξ,η

E2Sysξy,y=0,ηx+ξy=0,ηy=0,ξx=0,indep=x,y,dep=ξ,η

(2)

E2LAVFV,E2Sys

E2ξⅆⅆx+ηⅆⅆy&whereξy,y=0,ξx=0,ηx=ξy,ηy=0

(3)

Data attributes of E2 can be obtained by...

GetVectorFieldE2

ξⅆⅆx+ηⅆⅆy

(4)

GetDeterminingSystemE2

ξy,y=0,ξx=0,ηx=ξy,ηy=0,indep=x,y,dep=ξ,η

(5)

A valid LAVF object then has access to various methods. See Overview of the LAVF object for more information.

exportsE2,static

indets,has,hastype,type,GetVectorField,GetDeterminingSystem,ImplicitForm,SolutionDimension,IsFiniteType,IsTrivial,ParametricDerivatives,GetRanking,SetIDBasis,GetIDBasis,GetSpace,IsFlat,OrbitDistribution,OrbitDimension,InvariantCount,IsTransitive,Invariants,IsLieAlgebra,IsPerfect,DerivedAlgebra,IsSolvable,IsSoluble,DerivedSeries,SolvableRadical,SolubleRadical,Radical,IsNilpotent,Hypercentre,Hypercenter,NilRadical,Nilradical,LowerCentralSeries,UpperCentralSeries,IsAbelian,IsCommutative,Centre,Center,IsSemiSimple,IsReductive,NilpotentRadical,StructureConstants,StructureCoefficients,KillingRadical,KillingPolynomial,KillingForm,KillingOrthogonal,AdjointMatrix,AreCommuting,AreSame,AreSameSpace,Centraliser,Centralizer,Normaliser,CleanDependencies,Copy,DChange,dchange,Intersection,IsIdeal,IsInvariant,IsotropyRepresentation,IsSubspace,LAVFSolve,VectorSpaceSum,LieProduct,ProjectToSpace,Transporter,ModuleCopy,ModulePrint,ModuleApply

(6)

A simple way to construct a LAVF object whose determining system has trivial solution.

LAVFV,trivial

ξⅆⅆx+ηⅆⅆy&whereξ=0,η=0

(7)

Similarly, construct a universal LAVF:

LAVFV,universal

ξⅆⅆx+ηⅆⅆy&where

(8)

Compatibility

• 

The LieAlgebrasOfVectorFields[LAVF] command was introduced in Maple 2020.

• 

For more information on Maple 2020 changes, see Updates in Maple 2020.

See Also

LieAlgebrasOfVectorFields (Package overview)

LAVF (Object overview)

VectorField (Object overview)

LHPDE (Object overview)

LieAlgebrasOfVectorFields[VectorField]

LieAlgebrasOfVectorFields[LHPDE]