ifourier - Maple Help

Online Help

All Products    Maple    MapleSim


MTM

  

ifourier

  

inverse Fourier integral transform

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ifourier(M)

ifourier(M,u)

ifourier(M,v, u)

Parameters

M

-

array or expression

u

-

variable expr is transformed with respect to u 

v

-

parameter of transform

Description

• 

The ifourier function applies the inverse Fourier transform to M using the definition

fx=FwⅇIxwⅆw2π

• 

The ifourier(M) calling sequence computes the element-wise inverse Fourier transform of M.  The result, R, is formed as R[i,j] = ifourier(M[i,j], v, u).

• 

ifourier(F) is the inverse Fourier transform of the scalar F with default independent variable w.  If F is not a function of w, then F is  assumed to be a function of the independent variable returned by findsym(F,1). By default, the return value is a function of x.

• 

If F = F(x), then ifourier returns a function of t. The integration above proceeds with respect to w.

• 

ifourier(F,u) makes F a function of the variable u instead of the default x. The integration above proceeds with respect to w.

• 

ifourier(F,v,u) takes F to be a function of v instead of the default w. The integration is then with respect to v.

Examples

withMTM:

ifourier31+w2

3Heavisidexⅇx2+3ⅇxHeavisidex2

(1)

ifourier31+x2

3Heavisidetⅇt2+3ⅇtHeavisidet2

(2)

ifourier31+w2,s

3Heavisidesⅇs2+3ⅇsHeavisides2

(3)

ifourierz31+w2,z,t

3IDirac1,tw2+1

(4)

MMatrix31+w2,z31+w2:

ifourierM

3Heavisidexⅇx2+3ⅇxHeavisidex23zHeavisidexⅇx+ⅇxHeavisidex2

(5)

See Also

inttrans[invfourier]

MTM[exp]

MTM[findsym]

MTM[fourier]

MTM[heaviside]