Domain and Range of the Inverse Function - Maple Help

Home : Support : Online Help : Math Apps : Functions and Relations : Inverse Functions : Domain and Range of the Inverse Function

Domain and Range of the Inverse Function

To algebraically determine the formula for the inverse of a function $y=f\left(x\right)$, you switch the roles of $y$ and $x$ to get $x=f\left(y\right)$ and then solve this expression for $y$, finally getting $y={f}^{-1}\left(x\right)$. Switching the roles of $y$ and $x$ effectively interchanges the roles of the domain and range of $f\left(x\right)$.

 Domain and Range of an Inverse Function Suppose we have a function $f\left(x\right)$ whose inverse is ${f}^{-1}\left(x\right)$. Then the domain of the inverse function ${f}^{-1}\left(x\right)$ is the range of $f\left(x\right)$ and the range of the inverse function ${f}^{-1}\left(x\right)$ is the domain of $f\left(x\right)$.

Illustrating  Draw an invertible function on the graph. As you draw, the domain and range of your function will be shown on the x- and y-axes.

Click Clear to start again.

Click Invert to plot the inverse of your function.

 More MathApps