Beta - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Statistics[Distributions]

  

Beta

  

beta distribution

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

'Beta'(nu, omega)

BetaDistribution(nu, omega)

Parameters

nu

-

first shape parameter

omega

-

second shape parameter

Description

• 

The beta distribution is a continuous probability distribution with probability density function given by:

ft=0t<0t1+ν1t1+ωΒν&comma;ωt<10otherwise

  

subject to the following conditions:

0<ν,0<ω

• 

The beta distribution is related to the independent Gamma variates Gamma(1,nu) and Gamma(1,omega) by the formula Beta(nu,omega) ~ Gamma(1,nu)/(Gamma(1,nu)+Gamma(1,omega)).

• 

Note that the Beta(a, b) returns the value of the Beta function with parameters a and b, so in order to define a Beta random variable one should use the unevaluated name 'Beta'. In 2D math notation, the capital letter Β looks like a capital letter B, but the two are different in Maple.

Examples

withStatistics&colon;

The following is invalid.

RandomVariableΒ1&comma;2

Error, (in Statistics:-Distribution) invalid input: too many and/or wrong type of arguments passed to Statistics:-Distributions:-DataStructure:-NewDistribution; first unused argument is 1/2

Alternatives are:

RandomVariableΒ1&comma;2

_R

(1)

and

RandomVariableBetaDistribution1&comma;2

_R0

(2)

XRandomVariableΒν&comma;ω&colon;

PDFX&comma;u

0u<0u1+ν1u1+ωΒν&comma;ωu<10otherwise

(3)

PDFX&comma;0.5

0.51.+ν0.51.+ωΒν&comma;ω

(4)

MeanX

νν+ω

(5)

VarianceX

νων+ω2ν+ω+1

(6)

References

  

Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.

  

Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998.  Vol. 1: Distribution Theory.

See Also

Statistics

Statistics[Distributions]

Statistics[RandomVariable]