Student[ODEs][Solve]
SecondOrder
Solve a second order ODE
Calling Sequence
Parameters
Description
Examples
Compatibility
SecondOrder(ODE, y(x))
ODE
-
a second order ordinary differential equation
y
name; the dependent variable
x
name; the independent variable
The SecondOrder(ODE, y(x)) command finds the solution of a second order ODE.
Use the option output=steps to make this command return an annotated step-by-step solution. Further control over the format and display of the step-by-step solution is available using the options described in Student:-Basics:-OutputStepsRecord. The options supported by that command can be passed to this one.
withStudentODEsSolve:
ode1≔2xdiffyx,x−9x2+2diffyx,x+x2+1diffyx,x,x=0
ode1≔2xⅆⅆxyx−9x2+2ⅆⅆxyx+x2+1ⅆ2ⅆx2yx=0
SecondOrderode1,yx
yx=∫−x22−12−x4+12x3+2x2+4c__1+12ⅆx+_C2,yx=∫−x22−12+x4+12x3+2x2+4c__1+12ⅆx+_C2
ode2≔diffyx,x,x−diffyx,x−xexpx=0
ode2≔ⅆ2ⅆx2yx−ⅆⅆxyx−xⅇx=0
SecondOrderode2,yx
yx=c__1+_C2ⅇx+ⅇx1−x+12x2
ode3≔diffyx,x,x+5diffyx,x2yx=0
ode3≔ⅆ2ⅆx2yx+5ⅆⅆxyx2yx=0
SecondOrderode3,yx
yx=6ⅇc__1x+6_C216,yx=−6ⅇc__1x+6_C216
ode4≔diffyx,x,x−diffyx,x−6yx=0
ode4≔ⅆ2ⅆx2yx−ⅆⅆxyx−6yx=0
SecondOrderode4,yx
yx=c__1ⅇ−2x+_C2ⅇ3x
ode5≔diffyx,x,x−diffyx,x=x2+6yx
ode5≔ⅆ2ⅆx2yx−ⅆⅆxyx=x2+6yx
SecondOrderode5,yx
yx=c__1ⅇ−2x+_C2ⅇ3x−x26+x18−7108
ode6≔diffyx,x,x+4yx=−4diffyx,x
ode6≔ⅆ2ⅆx2yx+4yx=−4ⅆⅆxyx
SecondOrderode6,yx
yx=c__1ⅇ−2x+_C2xⅇ−2x
ode7≔5diffyx,x,x+20yx+15sinx=−20diffyx,x
ode7≔5ⅆ2ⅆx2yx+20yx+15sinx=−20ⅆⅆxyx
SecondOrderode7,yx
yx=c__1ⅇ−2x+_C2xⅇ−2x+12cosx25−9sinx25
ode8≔diffyx,x,x+2yx+2diffyx,x=0
ode8≔ⅆ2ⅆx2yx+2yx+2ⅆⅆxyx=0
SecondOrderode8,yx
yx=c__1ⅇ−xcosx+_C2ⅇ−xsinx
ode9≔diffyx,x,x+2yx−2diffyx,x=expx
ode9≔ⅆ2ⅆx2yx+2yx−2ⅆⅆxyx=ⅇx
SecondOrderode9,yx
yx=c__1ⅇxcosx+_C2ⅇxsinx+ⅇx
The Student[ODEs][Solve][SecondOrder] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
The Student[ODEs][Solve][SecondOrder] command was updated in Maple 2022.
The output option was introduced in Maple 2022.
For more information on Maple 2022 changes, see Updates in Maple 2022.
See Also
dsolve
Student
Student[ODEs]
Student[ODEs][DifferentialOrder]
Download Help Document