KoepfGosper - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


SumTools[Hypergeometric]

  

KoepfGosper

  

indefinite summation of j-fold hypergeometric terms

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

KoepfGosper(T, n)

Parameters

T

-

hypergeometric term in n

n

-

name; specifies summation index

Description

• 

The KoepfGosper(T, n) command solves the problem of indefinite summation of j-fold hypergeometric terms, that is, for the input j-fold hypergeometric term T of n, it constructs a function G which is a sum of hypergeometric terms of n such that Tn=Gn+1Gn, provided that such a G exists. Otherwise, the function returns the error message ``no solution found''.

• 

The parameter T is a j-fold hypergeometric term in n if Tn+jTn is a rational function in n.

Examples

withSumToolsHypergeometric:

Tnn2!

Tnn2!

(1)

KoepfGosperT,n

2n2!+2n2+12!

(2)

IsHypergeometricTermT,n

false

(3)

Note that T is not a hypergeometric term in n. Hence, Gosper's algorithm is not applicable to T.

References

  

Koepf, W. "Algorithms for m-fold Hypergeometric Summation." Journal of Symbolic Computation. Vol. 20 No. 4. (1995): 399-417.

  

Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, 1998.

See Also

SumTools[Hypergeometric]

SumTools[Hypergeometric][Gosper]

SumTools[Hypergeometric][KoepfZeilberger]