Gosper - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


SumTools[Hypergeometric]

  

Gosper

  

perform indefinite hypergeometric summation

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Gosper(T, n, r)

Parameters

T

-

hypergeometric term of n

n

-

variable

r

-

(optional) name

Description

• 

The Gosper(T,n,r) command solves the problem of indefinite hypergeometric summation, that is, for the given hypergeometric term T of n, it constructs another hypergeometric term G of n such that Tn=Gn+1Gn, provided that such a term exists. Otherwise, the function returns the error message "no solution found".

• 

If the third optional argument r is specified, it is assigned the rational function rn such that Gn=rnTn if G was computed successfully, and FAIL otherwise.

Examples

withSumToolsHypergeometric:

T4nn4binomial2n,n

T4nn42nn

(1)

GosperT,n

2n163n4140n3+60n2+26n64n6932nn

(2)

TProductj3,j=1..n1Productj3+1,j=1..n

Tj=1n1j3j=1nj3+1

(3)

GosperT,n,r

n+1I32n+1I3+2n1j=1n1j34j=1nj3+1

(4)

r

n+1I32n+1I3+2n14

(5)

No hypergeometric solution found:

Tn2binomial2n,n

Tn22nn

(6)

GosperT,n,r

Error, (in SumTools:-Hypergeometric:-Gosper) no solution found

r

FAIL

(7)

References

  

Gosper, R.W., Jr. "Decision procedure for indefinite hypergeometric summation." Proc. Natl. Acad. Sci. USA. Vol. 75. (1977): 40-42.

See Also

SumTools[Hypergeometric]

SumTools[Hypergeometric][ExtendedGosper]

SumTools[Hypergeometric][PolynomialNormalForm]

SumTools[Hypergeometric][SumDecomposition]

SumTools[Hypergeometric][Zeilberger]

SumTools[IndefiniteSum][AccurateSummation]