Zeta - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Zeta

The Riemann Zeta function; the Hurwitz Zeta function

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Zeta(z)

ζz

Zeta(n, z)

ζnz

Zeta(n, z, v)

ζnz,v

Parameters

n

-

algebraic expression; understood to be a non-negative integer

z

-

algebraic expression

v

-

algebraic expression; understood not to be a non-positive integer

Description

• 

The Zeta function (zeta function) is defined for Re(z)>1 by

ζz=i=11iz

  

and is extended to the rest of the complex plane (except for the point z=1) by analytic continuation.  The point z=1 is a simple pole.

• 

The call Zeta(n, z) gives the nth derivative of the Zeta function,

ζnz=ⅆnⅆznζz

• 

You can enter the command Zeta using either the 1-D calling sequence or in 2-D using command completion.

• 

The optional third parameter v changes the expression of summation to 1/(i+v)^z, so that for Re(z)>1,

ζnz,v=nzni=01i+vz

  

and, again, this is extended to the complex plane less the point 1 by analytic continuation.  The point z=1 is a simple pole for the function Zeta(0, z, v).

  

The third parameter, v, can be any complex number which is not a non-positive integer.

• 

The function Zeta(0, z, v) is often called the Hurwitz Zeta function or the Generalized Zeta function.

Examples

ζ2.2

1.490543257

(1)

evalfζ1.5+3.5I,30

0.232434139233841813873124398558+0.173728378830616590886617515292I

(2)

ζ112

ζ12γ2+ln8π2+π4

(3)

ζ02,12

π22

(4)

ζ02,s

Ψ1,s

(5)

ζ31.5+0.3I,0.2

70.20062910+64.74329586I

(6)

ζ31.2+35.3I,0.2+I

−2.383200150×1021+1.841204211×1021I

(7)

sum1i7,i=1..

ζ7

(8)

The following plot shows a plot of the Zeta function along the critical line for real values of t from 0 to 34.

plots:-complexplotζ0.5+tI,t=0..34,scaling=constrained,numpoints=300,labels=Re,Im

References

  

Erdelyi, A. Higher Transcendental Functions. McGraw-Hill, 1953. Vol. 1.

See Also

initialfunctions

JacobiZeta

MultiZeta

PolynomialTools[Hurwitz]