RadicalCenter - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

geometry

 find the radical center of three given circles

 Calling Sequence RadicalCenter(o, c1, c2, c3)

Parameters

 o - the name of the radical center c1, c2, c3 - three circles

Description

 • The point of concurrence of the radical axes of three circles with noncollinear centers, taken in pairs, is called the radical center of the three circles.
 • For a detailed description of the radical center o, use the routine detail (i.e., detail(o))
 • The command with(geometry,RadicalCenter) allows the use of the abbreviated form of this command.

Examples

 > $\mathrm{with}\left(\mathrm{geometry}\right):$
 > $\mathrm{circle}\left(\mathrm{c1},{x}^{2}+{y}^{2}=1,\left[x,y\right]\right),\mathrm{circle}\left(\mathrm{c2},\left[\mathrm{point}\left(A,3,3\right),4\right],\left[x,y\right]\right):$
 > $\mathrm{circle}\left(\mathrm{c3},{\left(x-2\right)}^{2}+{y}^{2}=\frac{9}{4},\left[x,y\right]\right):$
 > $\mathrm{RadicalCenter}\left(o,\mathrm{c1},\mathrm{c2},\mathrm{c3}\right)$
 ${o}$ (1)
 > $\mathrm{form}\left(o\right)$
 ${\mathrm{point2d}}$ (2)
 > $\mathrm{coordinates}\left(o\right)$
 $\left[\frac{{11}}{{16}}{,}{-}\frac{{3}}{{16}}\right]$ (3)