OrePoly Structure - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

The OrePoly Structure

• 

An Ore polynomial is represented by an OrePoly structure. It consists of the constructor OrePoly with a sequence of coefficients starting with the one of degree zero. For example, in the differential case with the differential operator D, OrePoly(2/x, x, x+1, 1) represents the operator 2/x+xD+(x+1)D^2+D^3.

• 

For a brief review of pseudo-linear algebra (also known as Ore algebra), see OreAlgebra.

Examples

withOreTools:

Define the differential algebra.

ASetOreRingx,differential

AUnivariateOreRingx,differential

(1)

PolyOrePoly23x+1x24+27x,2x4+27x,1

PolyOrePoly23x+1x24+27x,2x4+27x,1

(2)

ApplyPoly,fx,A

23x+1fxx24+27x2ⅆⅆxfxx4+27x+ⅆ2ⅆx2fx

(3)

Define the shift algebra.

ASetOreRingn,shift

AUnivariateOreRingn,shift

(4)

PolyOrePoly1,2,2,1

PolyOrePoly1,−2,−2,1

(5)

ApplyPoly,sn,A

sn2sn+12sn+2+sn+3

(6)

Define the q-shift algebra.

ASetOreRingx,q,qshift

AUnivariateOreRingx,qshift

(7)

PolyOrePolyq1qx,1

PolyOrePolyqqx+1,1

(8)

ApplyPoly,sx,A

qqx+1sx+sqx

(9)

See Also

OreTools

OreTools/Apply

OreTools/OreAlgebra

OreTools/SetOreRing

 


Download Help Document