GenerateSimilarODE - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

RandomTools

  

GenerateSimilarODE

  

create a random differential equation similar to the one given

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

GenerateSimilarODE( eqn )

Parameters

eqn

-

differential equation with one dependent and one independent variable

Description

• 

The GenerateSimilarODE command takes an ordinary differential equation (ODE) eqn with 1 dependent and 1 independent variable and returns a similar ODE in the same variables.

• 

Linear ordinary differential equations with constant coefficients that have order higher than 1 return a linear ordinary differential equations with constant coefficients that have similar roots to the characteristic polynomial of the ODE. Each real root in eqn will have a corresponding real root in the output ODE, each repeated root in eqn will correspond to a repeated root in the output ODE. A pair of complex conjugate roots in eqn will correspond to a pair of complex conjugate roots in the output ODE.

• 

Linear ordinary differential equations with constant coefficients that have order higher than 1 and a forcing function that contains functions that are linearly dependent to the solution of the homogeneous ODE produce an ODE with the similar roots described above and a forcing function that has functions that are linearly dependent to the solutions of the homogeneous output ODE.   

• 

Bessel differential equations or differential equations that can be converted into Bessel differential equations return Bessel differential equations or differential equations that can be converted into Bessel differential equations.

• 

Differential equations that when solved produce terminating Legendre polynomials return differential equations that when solved produce terminating Legendre polynomials.

• 

Differential equations that when solved produce terminating Laguerre polynomials return differential equations that when solved produce terminating Laguerre polynomials.

• 

Chebyshev differential equations produce Chebyshev differential equations.

Examples

withRandomTools:

ODE1%diffyx,xyx+sinx=expxyx

ODE1ⅆⅆxyxyx+sinx=ⅇxyx

(1)

GenerateSimilarODEODE1

4ⅆⅆxyxyx9cosx=7ⅇ6xyx

(2)

2nd order linear ODE with constant coefficients with a characteristic polynomial that has real roots.

ODE2%diffyx,`$`x,2+%diffyx,x6yx=0

ODE2ⅆ2ⅆx2yx+ⅆⅆxyx6yx=0

(3)

dsolveODE2

yx=c__1ⅇ2x+c__2ⅇ3x

(4)

newODE2GenerateSimilarODEODE2

newODE219ⅆⅆxyxⅆ2ⅆx2yx90yx=0

(5)

dsolvenewODE2

yx=c__1ⅇ9x+c__2ⅇ10x

(6)

2nd order linear ODE with constant coefficients with a repeated root.

ODE3%diffyx,`$`x,26%diffyx,x+9yx=0

ODE3ⅆ2ⅆx2yx6ⅆⅆxyx+9yx=0

(7)

dsolveODE3

yx=c__1ⅇ3x+c__2ⅇ3xx

(8)

newODE3GenerateSimilarODEODE3

newODE316ⅆⅆxyx+ⅆ2ⅆx2yx+64yx=0

(9)

dsolvenewODE3

yx=c__1ⅇ8x+c__2ⅇ8xx

(10)

2nd order linear ODE with a pair of complex conjugate roots.

ODE4%diffyx,`$`x,22%diffyx,x+2yx=0

ODE4ⅆ2ⅆx2yx2ⅆⅆxyx+2yx=0

(11)

dsolveODE4

yx=c__1ⅇxsinx+c__2ⅇxcosx

(12)

newODE4GenerateSimilarODEODE4

newODE420ⅆⅆxyx+ⅆ2ⅆx2yx+101yx=0

(13)

dsolvenewODE4

yx=c__1ⅇ10xsinx+c__2ⅇ10xcosx

(14)

2nd order linear ODE with forcing function that contains a function that is linearly dependent to a solution to the homogeneous ODE.

ODE5%diffyx,`$`x,2+%diffyx,x6yx=xexp2x

ODE5ⅆ2ⅆx2yx+ⅆⅆxyx6yx=xⅇ2x

(15)

dsolveODE5

yx=ⅇ2xc__2+ⅇ3xc__1+ⅇ2xx5x250

(16)

newODE5GenerateSimilarODEODE5

newODE518ⅆⅆxyxⅆ2ⅆx2yx80yx=10xⅇ8x

(17)

dsolvenewODE5

yx=ⅇ8xc__2+ⅇ10xc__1+5xx1ⅇ8x2

(18)

Bessel differential equation.

ODE6x2%diffyx,`$`x,2+x%diffyx,x+x2yx=0

ODE6x2ⅆ2ⅆx2yx+xⅆⅆxyx+x2yx=0

(19)

dsolveODE6

yx=c__1BesselJ0,x+c__2BesselY0,x

(20)

newODE6GenerateSimilarODEODE6

newODE6x2ⅆ2ⅆx2yx+xⅆⅆxyx+x236yx=0

(21)

dsolvenewODE6

yx=c__1BesselJ6,x+c__2BesselY6,x

(22)

ODE7x2%diffyx,`$`x,2+x%diffyx,x+x29yx=0

ODE7x2ⅆ2ⅆx2yx+xⅆⅆxyx+x29yx=0

(23)

dsolveODE7

yx=c__1BesselJ3,x+c__2BesselY3,x

(24)

newODE7GenerateSimilarODEODE7

newODE7x2ⅆ2ⅆx2yx+xⅆⅆxyx+x249yx=0

(25)

dsolvenewODE7

yx=c__1BesselJ7,x+c__2BesselY7,x

(26)

ODEs that can be converted to a Bessel differential equation.

ODE8x2%diffyx,`$`x,2+2x%diffyx,x+x2yx=0

ODE8x2ⅆ2ⅆx2yx+2xⅆⅆxyx+x2yx=0

(27)

dsolveODE8

yx=c__1sinxx+c__2cosxx

(28)

newODE8GenerateSimilarODEODE8

newODE8x2ⅆ2ⅆx2yx+3xⅆⅆxyx+x24yx=0

(29)

dsolvenewODE8

yx=c__1BesselJ5,xx+c__2BesselY5,xx

(30)

ODE92x2%diffyx,`$`x,2+x%diffyx,x+x2yx=0

ODE92x2ⅆ2ⅆx2yx+xⅆⅆxyx+x2yx=0

(31)

dsolveODE9

yx=c__1x14BesselJ14,2x2+c__2x14BesselY14,2x2

(32)

newODE9GenerateSimilarODEODE9

newODE95x2ⅆ2ⅆx2yx+xⅆⅆxyx+x24yx=0

(33)

dsolvenewODE9

yx=c__1x25BesselJ265,5x5+c__2x25BesselY265,5x5

(34)

Terminating Laguerre polynomials.

ODE10x%diffyx,`$`x,2+1x%diffyx,x+yx=0

ODE10xⅆ2ⅆx2yx+1xⅆⅆxyx+yx=0

(35)

dsolveODE10

yx=c__1x1+c__2x1Ei1x+ⅇx

(36)

newODE10GenerateSimilarODEODE10

newODE10xⅆ2ⅆx2yx+1xⅆⅆxyx+2yx=0

(37)

dsolvenewODE10

yx=c__1x24x+2+c__2x24x+2Ei1x4+x3ⅇx4

(38)

ODE11x%diffyx,`$`x,2+1x%diffyx,x+5yx=0

ODE11xⅆ2ⅆx2yx+1xⅆⅆxyx+5yx=0

(39)

dsolveODE11

yx=c__1x525x4+200x3600x2+600x120+c__2x525x4+200x3600x2+600x120Ei1x600+ⅇxx424x3+177x2444x+274600

(40)

newODE11GenerateSimilarODEODE11

newODE11xⅆ2ⅆx2yx+1xⅆⅆxyx=0

(41)

dsolvenewODE11

yx=c__1+Ei1xc__2

(42)

Terminating Legendre polynomials.

ODE121x2%diffyx,`$`x,22x%diffyx,x+6yx=0

ODE12x2+1ⅆ2ⅆx2yx2xⅆⅆxyx+6yx=0

(43)

dsolveODE12

yx=c__13x2+1+c__23x21lnx12+3x2+1lnx+12+3x

(44)

newODE12GenerateSimilarODEODE12

newODE12x2+1ⅆ2ⅆx2yx2xⅆⅆxyxyxx2+1=0

(45)

dsolvenewODE12

yx=c__1xx2+1+c__2x2+1

(46)

ODE131x2%diffyx,`$`x,22x%diffyx,x+12yx=0

ODE13x2+1ⅆ2ⅆx2yx2xⅆⅆxyx+12yx=0

(47)

dsolveODE13

yx=c__153x3+x+c__219+5x33xlnx124+5x3+3xlnx+124+5x212

(48)

newODE13GenerateSimilarODEODE13

newODE13x2+1ⅆ2ⅆx2yx2xⅆⅆxyx+20yx=0

(49)

dsolvenewODE13

yx=c__1353x410x2+1+c__235x430x2+3lnx16+35x4+30x23lnx+16+35x3355x9

(50)

Chebyshev differential equation.

ODE141x2%diffyx,`$`x,2x%diffyx,x+25yx=0

ODE14x2+1ⅆ2ⅆx2yxxⅆⅆxyx+25yx=0

(51)

dsolveODE14

yx=c__1x+x215+c__2x+x215

(52)

newODE14GenerateSimilarODEODE14

newODE14x2+1ⅆ2ⅆx2yxxⅆⅆxyx+36yx=0

(53)

dsolvenewODE14

yx=c__1x+x216+c__2x+x216

(54)

Compatibility

• 

The RandomTools[GenerateSimilarODE] command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

HowDoI,WorkWithRandomGenerators

InertForm

rand

RandomTools

RandomTools[Generate]

RandomTools[GenerateSimilar]

randpoly

 


Download Help Document