Overview - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Overview of the SumTools Package

 

Calling Sequence

Description

References

Calling Sequence

SumTools:-command(arguments)

command(arguments)

Description

• 

The SumTools package contains commands that help find closed forms of definite and indefinite sums. The package consists of three commands and three subpackages.

• 

Each command in the SumTools package can be accessed by using either the long form or the short form of the command name in the command calling sequence.

• 

To display the help page for a particular SumTools command, see Getting Help with a Command in a Package.

Commands for Computing Closed Forms of Definite and Indefinite Sums

• 

SumTools:-Summation: compute closed forms of definite and indefinite sums

• 

SumTools:-DefiniteSummation: compute closed forms of definite sums

• 

SumTools:-IndefiniteSummation: compute closed forms of indefinite sums

Tools for Computing Closed Forms of Indefinite Sums: The IndefiniteSum Subpackage

• 

SumTools:-IndefiniteSum:-AccurateSummation: compute indefinite sums using the method of accurate summation

• 

SumTools:-IndefiniteSum:-AddIndefiniteSum: library extension mechanism

• 

SumTools:-IndefiniteSum:-HomotopySum: compute indefinite sums of expressions containing unspecified functions

• 

SumTools:-IndefiniteSum:-Hypergeometric: compute indefinite sums of hypergeometric terms

• 

SumTools:-IndefiniteSum:-Indefinite: compute closed forms of indefinite sums

• 

SumTools:-IndefiniteSum:-Polynomial: compute indefinite sums of polynomials

• 

SumTools:-IndefiniteSum:-Rational: compute indefinite sums of rational functions

• 

SumTools:-IndefiniteSum:-RemoveIndefiniteSum: library extension mechanism

Tools for Computing Closed Forms of Definite Sums: The DefiniteSum Subpackage

• 

SumTools:-DefiniteSum:-CreativeTelescoping: compute closed forms of definite sums using the creative telescoping method

• 

SumTools:-DefiniteSum:-Definite: compute closed forms of definite sums

• 

SumTools:-DefiniteSum:-pFqToStandardFunctions: compute closed forms of definite sums using the conversion method where the hypergeometric series is used as an intermediate representation

• 

SumTools:-DefiniteSum:-SummableSpace: compute all sequences satisfying a given first order recurrence that are summable by either Gosper's algorithm or the accurate summation algorithm

• 

SumTools:-DefiniteSum:-Telescoping: compute closed forms of definite sums using the classical telescoping method

Tools for Working with Hypergeometric Terms: The Hypergeometric Subpackage

• 

Normal forms of rational functions and hypergeometric terms:

  

SumTools:-Hypergeometric:-EfficientRepresentation,

  

SumTools:-Hypergeometric:-MultiplicativeDecomposition,

  

SumTools:-Hypergeometric:-PolynomialNormalForm,

  

SumTools:-Hypergeometric:-RationalCanonicalForm,

  

SumTools:-Hypergeometric:-RegularGammaForm,

  

SumTools:-Hypergeometric:-SumDecomposition

• 

Algorithms for definite and indefinite sums of hypergeometric type:

  

SumTools:-Hypergeometric:-ExtendedGosper,

  

SumTools:-Hypergeometric:-ExtendedZeilberger,

  

SumTools:-Hypergeometric:-Gosper,

  

SumTools:-Hypergeometric:-IsZApplicable,

  

SumTools:-Hypergeometric:-KoepfGosper,

  

SumTools:-Hypergeometric:-KoepfZeilberger,

  

SumTools:-Hypergeometric:-LowerBound,

  

SumTools:-Hypergeometric:-MinimalTelescoper,

  

SumTools:-Hypergeometric:-MinimalZpair,

  

SumTools:-Hypergeometric:-Zeilberger,

  

SumTools:-Hypergeometric:-ZeilbergerRecurrence,

  

SumTools:-Hypergeometric:-ZpairDirect

• 

Applications:

  

SumTools:-Hypergeometric:-DefiniteSum,

  

SumTools:-Hypergeometric:-IndefiniteSum,

  

SumTools:-Hypergeometric:-WZMethod

• 

Other functions:

  

SumTools:-Hypergeometric:-AreSimilar,

  

SumTools:-Hypergeometric:-ConjugateRTerm,

  

SumTools:-Hypergeometric:-BottomSequence,

  

SumTools:-Hypergeometric:-IsHolonomic,

  

SumTools:-Hypergeometric:-IsHypergeometricTerm,

  

SumTools:-Hypergeometric:-IsProperHypergeometricTerm,

  

SumTools:-Hypergeometric:-Verify

References

  

Abramov, S.A.; Carette, J.J.; Geddes, K.O.; and Le, H.Q. "Symbolic Summation in Maple." Technical Report CS-2002-32, School of Computer Science, University of Waterloo, Ontario, Canada. (2002).

See Also

LREtools

rsolve

sum

sumtools

UsingPackages

with

 


Download Help Document