Adjoint - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LieAlgebras[Adjoint] - find the ad Matrix for a vector in a Lie algebra

LieAlgebras[AdjointExp] - find the Ad Matrix for a vector in a Lie algebra

Calling Sequences

     Adjoint(alg)

     Adjoint(alg, keyword)

     Adjoint(x, h, k)

     AdjointExp(x)

Parameters

     alg      - (optional) the name of a Lie algebra

     keyword  - (optional) the keyword argument representationspace = framename, where framename is the name of an initialized frame

     x        - a vector in a Lie algebra g

     h        - (optional) a list of vectors defining a basis for a subspace h in a Lie algebra

     k        - (optional) a list of vectors defining a complementary basis in to 

 

 

Description

Examples

Description

• 

 Let be a Lie algebra and  Then the adjoint transformation defined by  is the linear transformation addefined by adfor all . The transformation always defines a derivation on that is, ad. The mapping addefines a representation of  The exponential of usually denoted by Ad(), is a Lie algebra isomorphism.

• 

Adjoint(x) returns the matrix representing the linear transformation .

• 

AdjointExp(x) returns the matrix representing the linear transformation Ad(x) = exp(.

• 

Adjoint() returns the list of adjoint matrices for the basis vectors of the current algebra .

• 

Adjoint(alg) returns the list of adjoint matrices for the basis vectors of the algebra alg.

• 

Adjoint(alg , representationspace = V) returns the adjoint representation of , with representation space V.

• 

Adjoint(x, h) calculates the restriction of ad(to the subspace h (h must be an ad() invariant subspace).

• 

Adjoint(x, h, k) calculates Adjoint(x) on the vector space quotient g/k with respect to the basis determined by h (k must be an ad() invariant subspace).

• 

The commands Adjoint and AdjointExp are part of the DifferentialGeometry:-LieAlgebras package. They can be used in the form Adjoint(...) and AdjointExp(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Adjoint(...) and DifferentialGeometry:-LieAlgebras:-AdjointExp(...).

Examples

 

Example 1.

First initialize a Lie algebra.

(2.1)

Alg1 > 

 

AdjointExp(t*e4) is given by the Matrix exponential of Adjoint(t*e4).

Alg1 > 

Alg1 > 

 

Calculate the restriction of Adjoint(e3) to the subspace defined by [e1, e2].

Alg1 > 

 

Calculate the linear transformation induced by Adjoint(e4 + 2*e3) on the quotient of [e1, e2, e3, e4] by the subspace defined by [e3, e4] with respect to the basis [e1, e2].

Alg1 > 

Calculate the adjoint representation of Alg1. First define the representation space.

(2.2)

Alg1 > 

(2.3)

See Also

DifferentialGeometry

LieAlgebras

LinearAlgebra[MatrixExponential]

Representation

 


Download Help Document