QuotientRepresentation - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LieAlgebras[QuotientRepresentation] - find the induced representation defined on the quotient space of the representation space by an invariant subspace

Calling Sequences

     QuotientRepresentation(, S, C, W)

Parameters

            - a representation of a Lie algebra  on a vector space

     S       - a list of vectors in whose span defines a invariant subspace of 

     C       - a list of vectors in  defining a complementary subspace to

     W       - a Maple name or string, giving the frame name for the representation space for the quotient representation

 

Description

Examples

Description

• 

If   is a representation and is a subspace of , then  is  invariant if for all  and Y . For any let  denote the coset of in the quotient space . The induced representation is defined

by

• 

The command QuotientRepresentation(rho, S, C, W) returns the representation . The coset representatives of the vectors in C in the quotient space give the basis used to calculate the matrices for the linear transformation .

Examples

 

Example 1.

(2.1)

 

Initialize the Lie algebra Alg1.

 

Initialize the representation space .

Alg1 > 

 

Define the matrices which specify a representation of Alg1 on .

V > 

 

Define the representation.

V > 

 

Define a subspace  and use the Query command to check that it is invariant.

Alg1 > 

(2.2)
V > 

(2.3)

 

Pick a complement span ].This complement need not be invariant.

V > 

(2.4)

 

Define a vector space for the induced representation of on .

V > 

(2.5)

 

Compute the quotient representation. Note that in this example the matrices are just the lower blocks of the matrices in the original representation.

W > 

Alg1 > 

(2.6)

See Also

DifferentialGeometry

Library

LieAlgebras

Query

Retrieve

 


Download Help Document