WaveletPlot - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

DiscreteTransforms

 WaveletPlot
 plot the mother wavelet and the father wavelet (the scaling function) from the scaling and wavelet coefficients

 Calling Sequence WaveletPlot(g, h, options);

Parameters

 g - Vector; the scaling coefficients of the wavelet h - Vector; the wavelet coefficients of the wavelet options - (optional) equation(s) of the form keyword = value, where keyword is output, waveletname, or minpoints

Options

 • output=both, mother, or father
 – Determines whether the mother wavelet, father wavelet (the scaling function), or both are plotted.
 – The default value of this option is both.
 • minpoints=posint
 – Determines the minimum number of points sampled. Higher values will result in more detailed plots.
 – The default value of this option is 200.
 • waveletname=string
 – Determines the plot labels.
 – The default value of this option is the empty string.
 – If this option is provided, the plots will be indexed by "waveletname Father wavelet" and "waveletname Mother wavelet".

Description

 • WaveletPlot plots the scaling function and the mother wavelet given Vectors of the scaling and wavelet coefficients of a wavelet.
 • This function uses the Cascades algorithm to approximate a function phi(x) satisfying the equation:

$\mathrm{\phi }\left(x\right)=\sum _{n=1}^{\mathrm{rtable_elems}\left(h\right)}{h}_{n}\mathrm{\phi }\left(2x-n\right)$

 phi is the scaling function. From phi, the wavelet psi is computed as

$\mathrm{\psi }\left(x\right)=\sum _{n=1}^{\mathrm{rtable_elems}\left(g\right)}{g}_{n}\mathrm{\phi }\left(2x-n\right)$

 The functions phi are then plotted using plots[listplot].
 • h and g are usually the high and low pass scaling coefficients.

Examples

 > $\mathrm{with}\left(\mathrm{DiscreteTransforms}\right):$

The command to create the plot from the Plotting Guide is

 > $\mathrm{WaveletPlot}\left(\mathrm{WaveletCoefficients}\left("Daubechies",4\right)\right)$
 > $\mathrm{WaveletPlot}\left(\mathrm{WaveletCoefficients}\left("Daubechies",4\right),\mathrm{output}=\mathrm{mother}\right)$
 > $\mathrm{WaveletPlot}\left(\mathrm{WaveletCoefficients}\left("Daubechies",4\right),\mathrm{output}=\mathrm{father}\right)$
 > $\mathrm{WaveletPlot}\left(\mathrm{WaveletCoefficients}\left("Symlet",4\right),\mathrm{minpoints}=300,\mathrm{waveletname}="Sym4"\right)$