LeftCosets - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

LeftCosets

  

construct the left cosets of a subgroup of a group

  

RightCosets

  

construct the right cosets of a subgroup of a group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

LeftCosets( H, G )

RightCosets( H, G )

Parameters

G

-

a permutation group or a Cayley table group

H

-

a subgroup of G

Description

• 

The LeftCosets( H, G ) command returns the set of left cosets of the subgroup H of the permutation group G.

• 

The RightCosets( H, G ) command returns the set of right cosets of the subgroup H of the permutation group G.

• 

In each case, the collection of cosets (left or right) is returned as a set.

• 

The group G must be an instance of either a permutation group or a Cayley table group, and H must be a subgroup of G.

Examples

withGroupTheory:

GAlt4

GA4

(1)

GroupOrderG

12

(2)

HSylowSubgroup2,G

H1,23,4,1,32,4

(3)

GroupOrderH

4

(4)

lcLeftCosetsH,G

lc·1,23,4,1,32,4,2,3,4·1,23,4,1,32,4,2,4,3·1,23,4,1,32,4

(5)

nopslc=GroupOrderGGroupOrderH

3=3

(6)

Since the subgroup H is normal in G, the left and right cosets coincide.

mapRepresentative,lc

2,4,3,,2,3,4

(7)

mapRepresentative,RightCosetsH,G

2,4,3,,2,3,4

(8)

IsNormalH,G

true

(9)

Compatibility

• 

The GroupTheory[LeftCosets] and GroupTheory[RightCosets] commands were introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory

GroupTheory[AlternatingGroup]

GroupTheory[Coset]

GroupTheory[GroupOrder]

GroupTheory[IsNormal]

GroupTheory[SylowSubgroup]