 Cuboid Shape - MapleSim Help

Cuboid Shape

Cuboid, a box-shaped solid material  Description

The Cuboid Shape component models a generic ideal thermal conductor with cubic shapes.

It could get thermal information from each cubic divided by $\mathrm{Nodes}$.

The geometry of Cuboid Shape is illustrated by the following image. In the case of Cuboid Shape $\mathrm{Nodes}$ is [3, 3, 3] as shown below. The Cuboid Shape has ports: $\mathrm{left}$, $\mathrm{right}$, $\mathrm{front}$, $\mathrm{back}$,, and $\mathrm{bottom}.$ It could get thermal information from each port using probe.

The number of the probe is determined by the priority of $L$, $W$, $H$ and direction is right, back, bottom. The following is order when using probe at $\mathrm{port_center}$.  The order of the nodes of each surface is the following.     Left and right surface nodes as viewed from left Front and back surface nodes as viewed from front Top and bottom surface nodes as viewed from Top Equations (For details, see Cuboid, Thermal Conductor  and Heat Capacitor help). Variables (For details, see Cuboid, Thermal Conductor  and Heat Capacitor help). Connections

 Name Units Condition Description Modelica ID $\mathrm{port_left}\left[i\right]$ Thermal port of left The number of i is determined by Nodes of W*H port_left[] $\mathrm{port_right}\left[i\right]$ Thermal port of right The number of i is determined by Nodes of W*H port_right[] $\mathrm{port_front}\left[i\right]$ Thermal port of front The number of i is determined by Nodes of L*H port_front[] $\mathrm{port_back}\left[i\right]$ Thermal port of back The number of i is determined by Nodes of L*H port_back[] $\mathrm{port_top}\left[i\right]$  Thermal port of top The number of i is determined by Nodes of L*W port_top[] $\mathrm{port_bottom}\left[i\right]$ Thermal port of bottom The number of i is determined by Nodes of L*W port_bottom[] $\mathrm{port_center}\left[i\right]$ Thermal port of center The number of i is determined by Nodes of L*W*H port_center[] Parameters

 Symbol Default Units Description Modelica ID $\mathrm{Material}$ $\mathrm{SolidPropertyData}$ $-$ Solid material property data Material $\frac{W}{m\cdot K}$ Material.k is the thermal conductivity of the material Material.k $\frac{J}{\mathrm{kg}\cdot K}$ Material.cp is the specific heat capacity of the material Material.cp $\frac{\mathrm{kg}}{{m}^{3}}$ Material.rho is the density of the material Material.rho $\mathrm{false}$  If true, correction coefficient for thermal conductivity $\mathrm{k__cc}$ is available and that enables you to consider anisotoropic thermal conductivity per each direction L, W and, H use_kcc $\mathrm{k__cc}$ $\left[1,1,1\right]$ ${m}^{}$ (When  is true) Correction coefficient for thermal conductivity in each direction [L, W, H] kcc $L$ $1$ ${m}^{}$ Length of cubic L $W$ $1$ ${m}^{}$ Width of cubic W $H$ $1$ ${m}^{}$ Height of cubic H $\mathrm{Nodes}$ [5, 3, 3] Number of nodes [L, W, H] $\mathrm{numNode}\left[3\right]$ $\mathrm{T__start}$ $293.15$ $K$ Initial condition of temperature T_start Parameters for Visualization (Optional)

Note: If you enable Show Visualization option, you can visualize temperature change as colored geometry in 3-D Playback Window. To make this function available, you have to enable 3-D Animation option in Multibody Settings.
The quality of the visualization is affected if any open plot windows are behind the 3-D Playback Window. If you are experiencing playback issues, try moving the 3-D Playback Window so that it does not overlap a plot window. Alternatively, minimize or close any open plot windows.

(For more details about the relation between color and temperature, see Color Blend  help).

 Symbol Default Units Description Modelica ID $\mathrm{false}$ $-$ If true, you can visualize temperature of Heat Capacitor as colored sphere with geometry in 3-D Playback Window. And the following visualization parameters are available. VisOn $\mathrm{Position}$ $\left[0,0,0\right]$ $m$ Position of the node in visualization [X, Y, Z]. pos Rotation $\left[0,0,0\right]$ rad Rotation of the node in visualization [X, Y, Z]. rot $\mathrm{Transparent}$ $\mathrm{false}$ $-$ If true, heat capacitor sphere is displayed as transparent. transparent $\mathrm{T__max}$ $373.15$ $K$ Upper limit of temperature in the color blend. Tmax $\colorbox[rgb]{1,0,0}{{\mathrm{RGB}}}\left(\colorbox[rgb]{1,0,0}{{255}}\colorbox[rgb]{1,0,0}{{,}}\colorbox[rgb]{1,0,0}{{0}}\colorbox[rgb]{1,0,0}{{,}}\colorbox[rgb]{1,0,0}{{0}}\right)$ $-$ Color when temperature is over Temperature between $\mathrm{T__max}$ and $\mathrm{T__min}$ are automatically interpolated to a color. color_Tmax $\mathrm{T__min}$ $273.15$ $K$ Lower limit of temperature in the color blend. Tmin $\colorbox[rgb]{0,0,1}{{\mathrm{RGB}}}\left(\colorbox[rgb]{0,0,1}{{0}}\colorbox[rgb]{0,0,1}{{,}}\colorbox[rgb]{0,0,1}{{0}}\colorbox[rgb]{0,0,1}{{,}}\colorbox[rgb]{0,0,1}{{255}}\right)$ $-$ Color when temperature is under $\mathrm{T__min}$. Temperature between $\mathrm{T__max}$ and $\mathrm{T__min}$ are automatically interpolated to a color. color_Tmin $\mathrm{R__sphere}$ $0.2$ $m$ Radius of visualized heat capacitor sphere. Sradius See Also