delta - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

LREtools

 shift
 integer shift of an expression
 delta
 single or iterated differencing of an expression

 Calling Sequence shift(e, var) shift(e, var, i) delta(e, var) delta(e, var, n)

Parameters

 e - expression var - variable name i - (optional) integer n - (optional) positive integer

Description

 • shift returns the expression equivalent to $\mathrm{subs}\left(\mathrm{var}=\mathrm{var}+i,e\right)$, where i is assumed to be 1 in the two argument case.
 • This procedure knows about various Maple constructs, like diff, where the variable must not be simply substituted.  Currently shift knows about diff, Diff, int, Int, sum, Sum, product, and Product.
 • Additional constructs can be added by the user.  If the procedure LREtools/shift/f is defined then the function call LREtools[shift](f(n,x), n, 3) will invoke LREtools/shift/f(f(n,x), n, 3) to compute the shift.
 • delta(e, var) is defined to be shift(e, var, 1)-e and delta(e, var, n) is defined to be delta(shift(e, var, 1)-e, var, n-1).  Thus differencing is also user-extensible by providing the extension for shift.

Examples

 > $\mathrm{with}\left(\mathrm{LREtools}\right):$
 > $\mathrm{shift}\left({x}^{5},x\right)$
 ${\left({x}{+}{1}\right)}^{{5}}$ (1)
 > $\mathrm{shift}\left({x}^{5},x,3\right)$
 ${\left({x}{+}{3}\right)}^{{5}}$ (2)
 > $\mathrm{shift}\left(f\left(x\right),x,-2\right)$
 ${f}{}\left({x}{-}{2}\right)$ (3)
 > $\mathrm{shift}\left(\frac{ⅆ}{ⅆx}f\left(x\right),x\right)$
 ${\mathrm{D}}{}\left({f}\right){}\left({x}{+}{1}\right)$ (4)
 > $\mathrm{δ}\left(\mathrm{sin}\left(n\right),n\right)$
 ${\mathrm{sin}}{}\left({n}{+}{1}\right){-}{\mathrm{sin}}{}\left({n}\right)$ (5)
 > $\mathrm{δ}\left(\mathrm{cos}\left(n\right),n,2\right)$
 ${\mathrm{cos}}{}\left({n}{+}{2}\right){-}{2}{}{\mathrm{cos}}{}\left({n}{+}{1}\right){+}{\mathrm{cos}}{}\left({n}\right)$ (6)
 > $\mathrm{δ}\left({\prod }_{x}\phantom{\rule[-0.0ex]{5.0px}{0.0ex}}g\left(x\right),x\right)$
 $\left({\prod }_{{x}}{}{g}{}\left({x}{+}{1}\right)\right){-}\left({\prod }_{{x}}{}{g}{}\left({x}\right)\right)$ (7)