Base - Maple Help

Online Help

All Products    Maple    MapleSim


Ordinals

  

Base

  

convert ordinals between bases

 

Calling Sequence

Parameters

Returns

Description

Examples

Compatibility

Calling Sequence

Base(a, b, output=o)

Parameters

a, b

-

ordinals, nonnegative integers, or polynomials with positive integer coefficients

o

-

(optional) literal keyword; either list (default) or inert

Returns

• 

By default, a list of pairs e1,c1,e2,c2,..., where each ei and ci is either an ordinal data structure, a nonnegative integer, or a polynomial with positive integer coefficients, and 0cib for all i, where  is the ordering of ordinals.

• 

If output=inert is specified, then an inert sum of products of ordinal numbers using the inert operators &+, &. and &^, respectively, is returned.

Description

• 

The Base(a,b) calling sequence expresses the ordinal a in terms of powers of the base b instead of the standard base ω.

• 

By default, the result is returned as a list of pairs e1,c1,e2,c2,... such that

a=be1c1+be2c2+

  

e1e2 and  0cib for all i. Use output=inert to return the above sum-of-products form instead; see the Returns section.

• 

This representation is unique if b2. If b=0 or b=1, a division by zero error is raised.

• 

The exponents ei are not converted recursively; they are still represented in Cantor normal form (with respect to base ω).

• 

If bω, then all coefficients ci are either positive integers or polynomials with positive integer coefficients. In particular, if b=ω, then the ei and ci are just the exponents and coefficients of a in the Cantor normal form. Otherwise, if bω, some of the coefficients will be proper ordinals ω.

• 

The output representation is computed by calling the Log command repeatedly: if l,q,r=Loga,b, then Basea,b=l,q,opBaser,b.

• 

If one of a and b is a parametric ordinal and the logarithm cannot be taken, an error is raised.

Examples

withOrdinals

`+`&comma;`.`&comma;`<`&comma;<=&comma;Add&comma;Base&comma;Dec&comma;Decompose&comma;Div&comma;Eval&comma;Factor&comma;Gcd&comma;Lcm&comma;LessThan&comma;Log&comma;Max&comma;Min&comma;Mult&comma;Ordinal&comma;Power&comma;Split&comma;Sub&comma;`^`&comma;degree&comma;lcoeff&comma;log&comma;lterm&comma;ω&comma;quo&comma;rem&comma;tcoeff&comma;tdegree&comma;tterm

(1)

aOrdinal5&comma;1&comma;4&comma;4&comma;2&comma;2&comma;1&comma;1&comma;0&comma;3

aω5&plus;ω44&plus;ω22&plus;ω&plus;3

(2)

bOrdinal2&comma;1&comma;0&comma;3

bω2&plus;3

(3)

Basea&comma;b

2&comma;ω&plus;3&comma;1&comma;ω2&plus;2&comma;0&comma;ω&plus;3

(4)

l,q,rLoga&comma;b

l,q,r2,ω&plus;3,ω4&plus;ω22&plus;ω&plus;3

(5)

Baser&comma;b

1&comma;ω2&plus;2&comma;0&comma;ω&plus;3

(6)

Basea&comma;b&comma;output=inert

ω2&plus;32ω&plus;3&plus;ω2&plus;3ω2&plus;2&plus;ω&plus;3

(7)

value

ω5&plus;ω44&plus;ω22&plus;ω&plus;3

(8)

Parametric examples.

Basea&comma;ω2+2+x

Error, (in Ordinals:-Sub) unable to subtract 2+x from 2

Basea&comma;ω2+3+x

2&comma;ω&plus;3&comma;1&comma;ω2&plus;2&comma;0&comma;ω&plus;3

(9)

Basea&comma;ω2+3+x&comma;output=inert

ω2&plus;3+x2ω&plus;3&plus;ω2&plus;3+xω2&plus;2&plus;ω&plus;3

(10)

value

ω5&plus;ω44&plus;ω22&plus;ω&plus;3

(11)

Basea&comma;ω2+2

2&comma;ω&plus;4&comma;0&comma;ω&plus;3

(12)

Basea&comma;ω2+1

2&comma;ω&plus;4&comma;1&comma;1&comma;0&comma;ω&plus;3

(13)

Basea&comma;ω2

2&comma;ω&plus;4&comma;1&comma;2&comma;0&comma;ω&plus;3

(14)

Basea&comma;ω+4+x

4&comma;ω&plus;3&comma;3&comma;ω&comma;2&comma;1&comma;1&comma;ω&comma;0&comma;ω&plus;3

(15)

Basea&comma;ω+3

5&comma;1&comma;3&comma;ω&comma;2&comma;1&comma;1&comma;ω&plus;1

(16)

Basea&comma;ω+2

5&comma;1&comma;4&comma;1&comma;3&comma;ω&comma;2&comma;1&comma;1&comma;ω&plus;1&comma;0&comma;1

(17)

Basea&comma;ω+1

5&comma;1&comma;4&comma;2&comma;3&comma;ω&comma;2&comma;2&comma;0&comma;2

(18)

Basea&comma;ω=opa

5&comma;1&comma;4&comma;4&comma;2&comma;2&comma;1&comma;1&comma;0&comma;3=5&comma;1&comma;4&comma;4&comma;2&comma;2&comma;1&comma;1&comma;0&comma;3

(19)

When the base is constant.

Basea&comma;5

ω5&comma;1&comma;ω4&comma;4&comma;ω2&comma;2&comma;ω&comma;1&comma;0&comma;3

(20)

Basea&comma;5&comma;output=inert

5ω5&plus;5ω44&plus;5ω22&plus;5ω&plus;3

(21)

Basea&comma;4

ω5&comma;1&comma;ω4&plus;1&comma;1&comma;ω2&comma;2&comma;ω&comma;1&comma;0&comma;3

(22)

Basea&comma;3

ω5&comma;1&comma;ω4&plus;1&comma;1&comma;ω4&comma;1&comma;ω2&comma;2&comma;ω&comma;1&comma;1&comma;1

(23)

Basea&comma;2

ω5&comma;1&comma;ω4&plus;2&comma;1&comma;ω2&plus;1&comma;1&comma;ω&comma;1&comma;1&comma;1&comma;0&comma;1

(24)

If both a and b are integers, this is the usual base b representation.

100=Base100&comma;3&comma;output=inert

100=35&plus;332&plus;3

(25)

Example with nonconstant exponents.

bω·2+3

bω2&plus;3

(26)

bb

ωω2&plus;32&plus;ωω2&plus;26&plus;ωω2&plus;16&plus;ωω23

(27)

aDec+x

aωω2&plus;32&plus;ωω2&plus;26&plus;ωω2&plus;16&plus;ωω22&plus;ωω&plus;1&plus;x

(28)

rBasea&comma;b

rω2&plus;2&comma;ω2&plus;2&comma;ω2&plus;1&comma;ω2&plus;2&comma;ω2&comma;ω2&plus;2&comma;ω&comma;ω&comma;0&comma;x

(29)

`+`seqbri,1·ri,2&comma;i=1..nopsr

ωω2&plus;32&plus;ωω2&plus;26&plus;ωω2&plus;16&plus;ωω22&plus;ωω&plus;1&plus;x

(30)

Compatibility

• 

The Ordinals[Base] command was introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

Ordinals

Ordinals[Log]

Ordinals[Ordinal]

Ordinals[Power]

value