Weibull - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Statistics[Distributions]

  

Weibull

  

Weibull distribution

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Weibull(b, c)

WeibullDistribution(b, c)

Parameters

b

-

scale parameter

c

-

shape parameter

Description

• 

The Weibull distribution is a continuous probability distribution with probability density function given by:

ft=0t<0ctc1&ExponentialE;tbcbcotherwise

  

subject to the following conditions:

0<b,0<c

• 

The Weibull variate is related to the standard Weibull variate by Weibull(b,c) ~ b*Weibull(1,c).

• 

The Weibull variate with scale parameter b and shape parameter 1 is equivalent to the Exponential variate with scale parameter b:  Weibull(b,1) ~ Exponential(b).

• 

The Weibull variate with scale parameter b and shape parameter 2 is equivalent to the Rayleigh variate:  Weibull(b,2) ~ Rayleigh(b).

• 

Note that the Weibull command is inert and should be used in combination with the RandomVariable command.

Examples

withStatistics&colon;

XRandomVariableWeibullb&comma;c&colon;

PDFX&comma;u

0u<0cuc1&ExponentialE;ubcbcotherwise

(1)

PDFX&comma;0.5

c0.51.+c&ExponentialE;1.0.5bcbc

(2)

MeanX

bΓ1+cc

(3)

VarianceX

b2Γc+2cΓ1+cc2

(4)

References

  

Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.

  

Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

See Also

Statistics

Statistics[Distributions]

Statistics[RandomVariable]