Simpson's 3-8th Rule - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Simpson's 3/8 Rule

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ApproximateInt(f(x), x = a..b, method = simpson[3/8], opts)

ApproximateInt(f(x), a..b, method = simpson[3/8], opts)

ApproximateInt(Int(f(x), x = a..b), method = simpson[3/8], opts)

Parameters

f(x)

-

algebraic expression in variable 'x'

x

-

name; specify the independent variable

a, b

-

algebraic expressions; specify the interval

opts

-

equation(s) of the form option=value where option is one of boxoptions, functionoptions, iterations, method, outline, output, partition, pointoptions, refinement, showarea, showfunction, showpoints, subpartition, view, or Student plot options; specify output options

Description

• 

The ApproximateInt(f(x), x = a..b, method = simpson[3/8], opts) command approximates the integral of f(x) from a to b by using Simpson's 3/8 rule.  This rule is also known as Newton's 3/8 rule. The first two arguments (function expression and range) can be replaced by a definite integral.

• 

If the independent variable can be uniquely determined from the expression, the parameter x need not be included in the calling sequence.

• 

Given a partition P=a=x0,x1,...,xN=b of the interval a,b, Simpson's 3/8 rule approximates the integral on each subinterval xi1,xi by integrating the cubic function that interpolates the four points xi1,fxi1, 2xi13+xi3,f2xi13+xi3, xi13+2xi3,fxi13+2xi3, and xi,fxi.  This value is

xixi1fxi1+3f2xi13+xi3+3fxi13+2xi3+fxi8

• 

In the case that the widths of the subintervals are equal, the approximation can be written as

bafx0+3f2x03+x13+3fx03+2x13+2fx1+3f2x13+x23+3fx13+2x23+2fx2+...+fxN13+2xN3+fxN8N

  

Traditionally, Simpson's 3/8 rule is written as: given N, where N is a positive multiple of 3, and given equally spaced points a=x0,x1,x2,...,xN=b, an approximation to the integral abfxⅆx is

3bafx0+3fx1+3fx2+2fx3+3fx4+3fx5+2fx6+3fx7+...+3fxN1+fxN8N

• 

By default, the interval is divided into 10 equal-sized subintervals.

• 

For the options opts, see the ApproximateInt help page.

• 

This rule can be applied interactively, through the ApproximateInt Tutor.

Examples

polynomialCurveFittingPolynomialInterpolationx0,2x0+x13,x0+2x13,x1,f0,f13,f23,f1,z:

integratedintpolynomial,z=x0..x1:

factorintegrated

x0x1f0+f1+3f13+3f238

(1)

withStudentCalculus1:

ApproximateIntsinx,x=0..5,method=simpson38

3sin14316+3sin29616+sin516+sin728+3sin11316+3sin23616+sin48+3sin25616+3sin13316+sin928+3sin7316+sin528+3sin8316+3sin17616+sin38+3sin19616+3sin10316+3sin7616+3sin4316+sin328+3sin5316+3sin11616+sin28+3sin13616+3sin1616+3sin1316+sin128+3sin2316+3sin5616+sin18

(2)

ApproximateIntxx2x3,x=0..5,method=simpson38,output=plot

ApproximateInttanx2x,x=1..1,method=simpson38,output=plot,partition=50

To play the following animation in this help page, right-click (Control-click, on Mac) the plot to display the context menu.  Select Animation > Play.

ApproximateIntlnx,1..100,method=simpson38,output=animation

See Also

Boole's Rules

Newton-Cotes Rules

plot/options

Simpson's Rule

Student

Student plot options

Student[Calculus1]

Student[Calculus1][ApproximateInt]

Student[Calculus1][ApproximateIntTutor]

Student[Calculus1][RiemannSum]

Student[Calculus1][VisualizationOverview]

Trapezoidal Rule