WZMethod - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


SumTools[Hypergeometric]

  

WZMethod

  

perform Wilf-Zeilberger's algorithm

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

WZMethod(f,r,n,k,cert)

Parameters

f

-

function of n and k

r

-

function of n

n

-

variable

k

-

variable

cert

-

(optional) name; assigned the computed WZ certificate

Description

• 

The WZMethod(f,r,n,k,cert) command certifies identities of the form kfn,k=rn.

• 

Let Fn,k=fn,krn if rn0 and Fn,k=fn,k, otherwise. If the method succeeds in certifying the given identity, the output is a list of two elements F,G representing the WZ-pair F,G such that Fn+1,kFn,k=Gn,k+1Gn,k. Otherwise, it returns the error message "WZ method fails".

• 

If the method is successful and if the fifth optional argument cert is given, cert is assigned the WZ certificate Rn,k=Gn,kFn,k.

• 

It is assumed that for each integer 0n, limkGn,k=0 and limkGn,k=0.

Examples

withSumToolsHypergeometric:

Proof of Gauss's 2F1 identity:

fn+k!b+k!cn1!cb1!c+k!n1!cnb1!k+1!b1!

fn+k!b+k!cn1!cb1!c+k!n1!cnb1!k+1!b1!

(1)

r1

r1

(2)

WZpairWZMethodf,r,n,k,cert:

FWZpair1

Fn+k!b+k!cn1!cb1!c+k!n1!cnb1!k+1!b1!

(3)

GWZpair2

Gcn2b!n!n+k!cn1!cn2!n+1+k!n1!cnb1!b+k!cb1!c+kk+1cnb1!n1!b1!k+1!cn2b!n!c+k!bk+bnck+nk+bc+k+n+1

(4)

cert

k+1c+kcn1n

(5)

Proof of Dixon's identity:

F1kbinomialn+b,n+kbinomialn+c,c+kbinomialb+c,b+k

F−1kn+bn+kn+cc+kb+cb+k

(6)

rn+b+c!n!b!c!

rn+b+c!n!b!c!

(7)

WZpairWZMethodF,r,n,k,certificate:

FWZpair1

F−1kn+bn+kn+cc+kb+cb+kn!b!c!n+b+c!

(8)

GWZpair2

Gn+1+bn+1+kn+1+cc+kn+1!n+b+c!n+1+b+c!n+bn+kn+cc+kn!c!b!b+cb+k−1kc+kn+1+kb+k2n+b+c!n+1+b+c!bcn+bk2+ck2+k2n+bc+k2

(9)

certificate

c+kb+k2n+k1n+1+b+c

(10)

References

  

Wilf, H., and Zeilberger, D. "Rational function certify combinatorial identities." J. Amer. Math. Soc. Vol. 3. (1990): 147-158.

See Also

limit

Sum

SumTools[Hypergeometric]

SumTools[Hypergeometric][Gosper]