 Maplet Interface - Maple Help

Typesetting

 RuleAssistant Calling Sequence RuleAssistant() Description

 • The RuleAssistant command launches a graphical user interface for changing and querying the current Typesetting rules. These are the rules that control the input of 2-D math and the extended mode typesetting of 2-D math output within the standard GUI.

To launch the Typesetting Rule Assistant:

 • From the View menu, select Typesetting Rules. After applying rules, click Done. The typesetting rules apply only to the current Maple session. Typesetting rules are not retained after issuing a restart. Rules

The commands in the Rules drop-down list control the use of the typesetting, parsing, and completion rules of 2-D Math expressions in Maple.

 • Parse - When the check box is selected, Maple uses the specified parse rules for 2-D Math input.
 Example: The rule BesselJ allows Maple to parse the function $J$ with a symbolic subscript (say $v$) as a function of a single variable (say $x$), ${J}_{v}\left(x\right)$, as the BesselJ function (BesselJ(v,x)).
 • Typeset - When the check box is selected, output is rendered using the specified rule.
 Example: The rule BesselJ allows Maple to typeset the function BesselJ(v,x) as ${J}_{v}\left(x\right)$.
 • Completion - When the check box is selected, command completion is enabled for the specified rule.
 Example: If the rule BesselJ is enabled for completion, you can enter BesselJ or J within the worksheet, and then press the command completion shortcut keys.
 Esc, Mac, Windows, and Linux
 Ctrl + Space, Windows
 Ctrl + Shift + Space, Linux
 One of the presented options is formatted as a BesselJ function ${J}_{v}\left(x\right)$.

To enable the typeset display of all special functions at once, use the Typesetting:-EnableTypesetRule command. Dependency Suppression

Suppresses the display of dependencies for a specified function, and allows entry of that function as simply the function name. Dependency suppression interacts with Differentiation Options.

 • Declaring another function of the same name with different dependencies replaces (removes) the previous declaration. For example, you cannot suppress the dependencies of f(t) and f(x,y) at the same time. The new function overrides the prior.
 • The function name must be of type 'symbol' and the dependencies must be of type 'name'. A warning is issued if an invalid name is entered.

To suppress the dependencies of a specified function:

 1 In the Add Function field, specify the function.
 2 Click Add Function. The specified function appears in the drop-down field beside the Remove button.

To remove the dependency, select the function from the drop-down list and click Remove.

 • The Display suppressed functions in italics option is provided to allow the display of suppressed functions to be identical to the display of identifiers.
 By default, suppressed functions are displayed in upright font, to provide a hint that, for example, the displayed 'f' is actually a function, and not just the name 'f'. Differential Options

 • Prime Derivatives - Indicates the use of prime notation for derivatives of univariate functions in the prime Variable.
 Parse - Enable parsing of prime notation in 2-D Math input.
 Typeset - Use prime notation in display of 2-D Math output.
 Variable (prime) - Specifies the variable to which the prime derivative corresponds.
 Limit - Specifies the limit after which differentiations of a univariate function of the prime variable are displayed as a bracketed number superscript instead of prime notation.
 • Dot Derivatives - Specifies use of dot notation for derivatives of univariate functions in the dot Variable.
 Parse - Enable parsing of dot notation in 2-D Math input.
 Typeset - Use dot notation in display of 2-D Math output.
 Variable (dot) - Specifies the variable for which the dot notation is used.
 • Subscript Derivatives - Use a subscripted sequence of variable names for partial derivatives of functions with suppressed dependencies.
 Note: Leaving the Variable field blank is also valid. Setting Variable to results in the use of D notation throughout. For example,

$F\text{'}\left(x\right)\to \mathrm{D}\left(f\right)\left(x\right)$

$f\text{'}\to \mathrm{D}\left(f\right)$

$\left(x+y\right)\text{'}\to \mathrm{D}\left(x\right)+\mathrm{D}\left(y\right)$ Dependency Suppression and Differential Options

 In the following examples, assume that the Prime Derivatives and Dot Derivatives check boxes are selected (set to true), and the settings for the prime Variable and the dot Variable are entered as $x$ and $t$ respectively.

 Maple No Suppression With Suppression -------- ----------------- ------------------- f(x) $f\left(x\right)$ $f$ diff(f(x),x) $f\prime \left(x\right)$ $f\prime$ D(f)(0) $f\prime \left(0\right)$ $f\prime \left(0\right)$ diff(g(t),t) $\stackrel{.}{g}\left(t\right)$ $\stackrel{.}{g}$ D(g)(0) $\stackrel{.}{g}\left(0\right)$ $\stackrel{.}{g}\left(0\right)$ diff(h(x,y),x,y) $\frac{{\partial }^{2}}{\partial x\partial y}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}h\left(x,y\right)$ $\frac{{\partial }^{2}}{\partial x\partial y}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}h$ (Subscript derivatives off) diff(h(x,y),x,y) $\frac{{\partial }^{2}}{\partial x\partial y}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}h\left(x,y\right)$ ${h}_{x,y}$ (Subscript derivatives on) Other Options

 • Use &+- for - This specifies whether the +/- symbol is to be used as a unary operator to give two options in an equation, or as a binary operator for use with the Tolerances package. For more information on this, see Tolerances.
 • Enable use of identifier 'd' when parsing derivatives - This is a convenience option. By default, constructing derivatives using differential d notation requires use of either the DifferentialD operator or the 'd' operator. For example, in the document enter the following.
 d + command completion keys, and select d(differential).
 If this option is set to Always, the parser examines rational expressions more closely, and for those containing the variable 'd', interprets the variable as the operator 'd' when appropriate.
 For example, entering:

$\frac{df}{dx}$

 will then be interpreted as a derivative, when the 'd' is the variable 'd'.
 • Allow shortcut function definition - The notation f(x) :=  means to assign to the remember table of the function 'f' for arguments 'x'. In 2-D Math, this can now also be used in place of the standard arrow procedure notation.
 For example f(x) := x^2 can be interpreted as the function definition f : = x->x^2.
 Note that for the input expression to allow this interpretation 'f' must be a name, and 'x' must be a name or sequence of names. Changing to Never or Always will fix the interpretation to be "remember table assignment" or "function definition" respectively.
 • Parse redundant brackets in superscripts as derivatives. For details, see the parsebrackets help page.
 • Automatically parse small scripted objects (that do not otherwise parse) as atomic variables - Certain notations, for example, x with a superscript of @, or x with a ^ over it have no mathematical meaning. These are interpreted as atomic variables that are different for 'x'. This extends the Maple namespace to include decorated objects. When set to false, this is never done automatically, instead requiring use of the context menus to bind an atomic variable. When set to true, names with simple scripts that have no parseable meaning are automatically assumed to be atomic variables.
 For a discussion of atomic variables, see Atomic Variables.
 • Parse () with no space as a function - This specifies whether numbers can be treated as operators (e.g. 2(x) parses and evaluates to 2) or not (e.g. 2(x) parses and evaluates to 2*x).
 • Strip trailing zeros from floats - This specifies that expressions containing floats be displayed with trailing zeros stripped. For example, $10.00000000$ normally displays as $10.00000000$, but when this option is enabled it displays as $10.$.
 • Use global information for typesetting derivatives - This specifies that the entire expression should be examined when typesetting derivatives. Normally, derivatives are examined individually to determine if partial or total derivative symbols should be used in the typeset output. Operator Display

Allows alternative extended typesetting for various operators. For example, Logical Not can display not using the symbol for not, $¬$, instead of the word not.

 • In the Operators Display group box, click the drop-down list to view the complete set of full name options.
 • Use for Typeset - Select the symbol or word for the operator. Parsing Errors For any errors, Maple displays an error message and visually identifies the area in question. For example in the above figure, the + in the sum example and the invalid scripts for integral example. Compatibility

 • The Typesetting[RuleAssistant] command was updated in Maple 2017.