 Eddy Current - MapleSim Help

Fundamental Wave Eddy Current

Salient EddyCurrent  Description The Fundamental Wave Eddy Current component models core losses due to eddy currents. A conditional heat port provides a thermal connection for the losses. The model is not temperature dependent. Equations ${\stackrel{^}{V}}_{m}={\stackrel{^}{V}}_{{m}_{p}}-{\stackrel{^}{V}}_{{m}_{n}}=\frac{2}{\mathrm{\pi }}\left\{\begin{array}{cc}G\stackrel{.}{\stackrel{^}{\mathrm{\Phi }}}& G>0\\ 0& \mathrm{otherwise}\end{array}$ $\stackrel{^}{\mathrm{\Phi }}={\stackrel{^}{\mathrm{\Phi }}}_{p}=-{\stackrel{^}{\mathrm{\Phi }}}_{n}=0$ $\mathrm{lossPower}=\frac{1}{2}\mathrm{\pi }\Re \left({\stackrel{^}{V}}_{m}\stackrel{.}{\stackrel{&conjugate0;}{\stackrel{^}{\mathrm{\Phi }}}}\right)$ ${T}_{\mathrm{hp}}=\left\{\begin{array}{cc}{T}_{\mathrm{heatPort}}& \mathrm{Use Heat Port}\\ T& \mathrm{otherwise}\end{array}$ $T=273.15$ Variables

 Name Units Description Modelica ID ${\stackrel{^}{V}}_{m}$ $\frac{1}{A}$ Complex magnetic potential difference V_m $\stackrel{^}{\mathrm{\Phi }}$ $\mathrm{Wb}$ Complex magnetic flux Phi $\mathrm{lossPower}$ $W$ Loss power leaving component via heatPort lossPower ${T}_{\mathrm{hp}}$ $K$ Temperature of heatPort TheatPort Connections

 Name Description Modelica ID ${\mathrm{port}}_{p}$ Positive complex magnetic port port_p ${\mathrm{port}}_{n}$ Negative complex magnetic port port_n $\mathrm{heatPort}$ heatPort Parameters

 Name Default Units Description Modelica ID $G$ $S$ Equivalent symmetric loss conductance G Use Heat Port $\mathrm{false}$ True (checked) enables heat port useHeatPort Modelica Standard Library The component described in this topic is from the Modelica Standard Library. To view the original documentation, which includes author and copyright information, click here.