QuasiStatic Eddy Current

Constant loss model under sinusoidal magnetic conditions

 Description The QuasiStatic Eddy Current component models core losses due to eddy currents.
 Equations $\overline{\mathrm{\Phi }}={\overline{\mathrm{\Phi }}}_{p}=-{\overline{\mathrm{\Phi }}}_{n}=\mathrm{\Re }\left(\overline{\mathrm{\Phi }}\right)+j\mathrm{\Im }\left(\overline{\mathrm{\Phi }}\right)$ ${\overline{V}}_{m}={\overline{V}}_{{m}_{p}}-{\overline{V}}_{{m}_{n}}=\mathrm{\Re }\left({\overline{V}}_{m}\right)+j\mathrm{\Im }\left({\overline{V}}_{m}\right)$ $\left\{\begin{array}{cc}\frac{\mathrm{\pi }}{2}{\overline{V}}_{m}=G\frac{d\overline{\mathrm{\Phi }}}{\mathrm{dt}}& 0 $\mathrm{lossPower}=\frac{\mathrm{\pi }}{2}\left(\mathrm{\Re }\left({\overline{V}}_{m}\right)\mathrm{\Re }\left(\frac{d\overline{\mathrm{\Phi }}}{\mathrm{dt}}\right)+\mathrm{\Im }\left({\overline{V}}_{m}\right)\mathrm{\Im }\left(\frac{d\overline{\mathrm{\Phi }}}{\mathrm{dt}}\right)\right)$

Connections

 Name Description Modelica ID ${\mathrm{port}}_{p}$ Positive complex magnetic port port_p ${\mathrm{port}}_{n}$ Negative complex magnetic port port_n $\mathrm{heatPort}$ Optional port to which dissipated losses are transported in form of heat heatPort

Parameters

General Parameters

 Name Default Units Description Modelica ID $G$ $S$ Equivalent symmetric loss conductance G Use Heat Port $\mathrm{false}$ True (checked) enables heat port useHeatPort

Constant Parameters

 Name Default Units Description Modelica ID $T$ $273.15$ $K$ Fixed device temperature if useHeatPort = false T

 Modelica Standard Library The component described in this topic is from the Modelica Standard Library. To view the original documentation, which includes author and copyright information, click here.